Probing Flavour Deconstruction via Primordial Gravitational Waves
Abstract
We study the production of primordial gravitational waves (GWs) from first-order phase transitions (FOPTs) in extensions of the Standard Model based on Flavour Deconstruction (FD). The link fields inherent to FD generically form a rich scalar sector, with sizeable couplings at the TeV scale, providing natural conditions for strong FOPTs and correspondingly large GW emission. We identify the key parameters controlling the GW spectrum and enabling its detection at future GW observatories. In particular, we find that while FD scenarios can yield detectable signals, the resulting spectra typically peak at higher frequencies than the millihertz range. As a consequence, a positive observation at LISA is possible but not guaranteed, while the signal falls in the range of mid-band proposals, making FD models an intriguing target for upcoming GW searches.