Revisiting thermodynamics at the outskirts of the Perseus cluster with Suzaku: importance of modeling the Hot Galactic gas
Abstract
The thermodynamic properties of the intracluster medium (ICM) at the outskirts of galaxy clusters provide valuable insights into the growth of the dark matter halo and the heating of the ICM. Considering the results of the soft X-ray background study of non-cluster Suzaku fields, we revisit 65 Suzaku pointing observations of the Perseus cluster in eight azimuthal directions beyond 1 Mpc (0.8 $r_{500}$). A possible foreground component, whose spectrum is modeled as a 1 keV collisional ionization equilibrium plasma, significantly affects the temperature and density measurements of the ICM in cluster outskirts. The emission measures in the six arms are similar, showing that the radial slopes of temperature and density follow $r^{-0.67\pm0.25}$ and $r^{-2.21\pm 0.06}$, respectively. The radial pressure profile is close to the average profile measured by the Planck satellite. The resulting entropy slope is $\propto r^{0.81\pm 0.25}$, consistent with the theoretical slope of 1.1. The integrated gas fraction, the ratio of the integrated gas mass to the hydrostatic mass, is estimated to be 0.13$\pm$0.01 and 0.18$\pm$0.02 at $r_{500}$ and $r_{200}$, respectively, consistent with the cosmic baryon fraction. These results suggest that the ICM at the cluster outskirts is quite regular and close to hydrostatic equilibrium. The remaining two arms show that the emission measure is higher by a factor of 1.5-2, possibly due to accretion from filaments from the large-scale structure. A sudden drop in the emission measure also occurs in a direction toward one of the filaments.