PBPK-iPINNs : Inverse Physics-Informed Neural Networks for Physiologically Based Pharmacokinetic Brain Models
Abstract
Physics-Informed Neural Networks (PINNs) leverage machine learning with differential equations to solve direct and inverse problems, ensuring predictions follow physical laws. Physiologically based pharmacokinetic (PBPK) modeling advances beyond classical compartmental approaches by using a mechanistic, physiology focused framework. A PBPK model is based on a system of ODEs, with each equation representing the mass balance of a drug in a compartment, such as an organ or tissue. These ODEs include parameters that reflect physiological, biochemical, and drug-specific characteristics to simulate how the drug moves through the body. In this paper, we introduce PBPK-iPINN, a method to estimate drug-specific or patient-specific parameters and drug concentration profiles in PBPK brain compartment models using inverse PINNs. We demonstrate that, for the inverse problem to converge to the correct solution, the loss function components (data loss, initial conditions loss, and residual loss) must be appropriately weighted, and parameters (including number of layers, number of neurons, activation functions, learning rate, optimizer, and collocation points) must be carefully tuned. The performance of the PBPK-iPINN approach is then compared with established traditional numerical and statistical methods.