Non-Markovian amplitude damping in a central spin model with random couplings
Abstract
Non-Markovian dynamics is central to quantum information processing, as memory effects strongly influence coherence preservation, metrology, and communication. In this work, we investigate the role of stochastic system--bath couplings in shaping non-Markovian behavior of open quantum systems, using the central spin model within a time-convolutionless master equation framework. We show that the character of the reduced dynamics depends jointly on the intrinsic memory of the environment and on the structure of the system--environment interaction. In certain regimes, the dynamics simplify to pure dephasing, while in general both amplitude damping and dephasing contribute to the evolution. By employing two complementary measures: the Quantum Fisher Information (QFI) flow and the Breuer--Laine--Piilo (BLP) measure, we demonstrate that QFI flow may fail to witness memory effects in weak-coupling and near-resonant regimes, whereas the BLP measure still detects information backflow. Furthermore, external modulation of the interaction kernel produces qualitatively richer behavior, including irregular and frequency-dependent revivals of non-Markovianity. These results clarify the physical origin of memory effects, highlight the limitations of single-witness approaches, and suggest that stochasticity and modulation can be harnessed to engineer robust, noise-resilient quantum technologies.