The self-assembly behavior of a diblock copolymer/homopolymer induced by Janus nanorods
Abstract
We employ cell dynamics simulation based on the CH/BD model to investigate the self-assembly behavior of a mixed system consisting of diblock copolymers (AB), homopolymers (C), and Janus nanorods. The results indicate that, at different component ratios, the mixed system undergoes various phase transitions with an increasing number of nanorods. Specifically, when the homopolymer component is 0.40, the mixed system transitions from a disordered structure to a parallel lamellar structure, subsequently to a tilted layered structure, and ultimately to a perpendicular lamellar structure as the number of nanorods increases. To explore this phenomenon in greater depth, we conduct a comprehensive analysis of domain sizes and pattern evolution. Additionally, we investigate the effects of the repulsive interaction strength between polymers, wetting strength, length of nanorods, and degree of asymmetry on the self-assembly behavior of the mixed system. This research provides significant theoretical and experimental insights for the preparation of novel nanomaterials.