Observation of Fully Flat Bands in a Photonic Dipolar Kagome Lattice
Abstract
Flat bands, characterized by zero group velocity and strong energy localization, enable interaction-enhanced phenomena across both quantum and classical systems. Existing photonic flat-band implementations were limited to evanescent-wave systems, specific lattice symmetries, or complex supercell modulations. A simple, universal, and efficient approach to realizing flat bands without dedicated source excitation is to be explored. Here, inspired by geometrically frustrated configurations, we theoretically proposed and experimentally demonstrated threefold-degenerate flat bands by integrating orbital and rotational degrees of freedom in a photonic dipolar kagome lattice. By rotating the dipole orientation, the system exhibits a band flip transition at which point all bands achieve complete flatness and degeneracy across the entire Brillouin zone. In contrast to conventional s-orbital kagome lattices with only a single flat band, our approach flattens the entire band structure, eliminating dispersive modes and enabling compatibility with arbitrary excitations. These results establish a new mechanism for flat-band engineering, offering a tunable strategy for enhancing light-matter interactions and may have applications in compact photonic devices and energy-efficient information processing.