Attosecond-resolved probing of recolliding electron wave packets in liquids and aqueous solutions
Abstract
High-harmonic spectroscopy (HHS) in liquids promises real-time access to ultrafast electronic dynamics in the native environment of chemical and biological processes. While electron recollision has been established as the dominant mechanism of high-harmonic generation (HHG) in liquids, resolving the underlying electron dynamics has remained elusive. Here we demonstrate attosecond-resolved measurements of recolliding electron wave packets, extending HHS from neat liquids to aqueous solutions. Using phase-controlled two-colour fields, we observe a linear scaling of the two-colour delay that maximizes even-harmonic emission with photon energy, yielding slopes of 208+/-55 as/eV in ethanol and 124+/-42 as/eV in water, the latter matching ab initio simulations (125+/-48 as/eV). In aqueous salt solutions, we uncover interference minima whose appearance depends on solute type and concentration, arising from destructive interference between solute and solvent emission. By measuring the relative phase of solvent and solute HHG, we retrieve a variation of electron transit time by 113+/-32 as/eV, consistent with our neat-liquid results. These findings establish HHS as a powerful attosecond-resolved probe of electron dynamics in disordered media, opening transformative opportunities for studying ultrafast processes such as energy transfer, charge migration, and proton dynamics in liquids and solutions.