Structural effects of boron doping in diamond crystals for gamma-ray light-source applications: Insights from molecular dynamics simulations
Abstract
Boron-doped diamond crystals (BDD, C$_{1-x}$B$_{x}$) exhibit exceptional mechanical strength, electronic tunability, and resistance to radiation damage. This makes them promising materials for use in gamma-ray crystal-based light sources. To better understand and quantify the structural distortions introduced by doping, which are critical for maintaining channelling efficiency, we perform atomistic-level molecular dynamics simulations on periodic C$_{1-x}$B$_{x}$ systems of various sizes. These simulations allow the influence of boron concentration on the lattice constant and the (110) and (100) inter-planar distances to be evaluated over the concentration range from pure diamond (0%) to 5% boron at room temperature (300 K). Linear relationships between both lattice constant and inter-planar distance with increasing dopant concentration are observed, with a deviation from Vegard's Law. This deviation is larger than that reported by other theoretical and computational studies; however, this may be attributed to an enhanced crystal quality over these studies, a vital aspect when considering gamma-ray crystal light source design. The methodology presented here incorporates several refinements to closely reflect the conditions of microwave plasma chemical vapour deposition (MPCVD) crystal growth. Validation of the methodology is provided through a comprehensive statistical analysis of the structure of our generated crystals. These results enable reliable atomistic modelling of doped diamond crystals and support their use in the design and fabrication of periodically bent structures for next-generation gamma-ray light source technologies.