Cogenesis of baryon and lepton number asymmetries matching the EMPRESS Data
Abstract
We show that a simple supersymmetric $U(1)_{B-L}$ extension of the standard model can explain simultaneously the large electron neutrino asymmetry hinted by the recent EMPRESS data as well as the observed tiny baryon number asymmetry via the resonant leptogenesis mechanism. The condensation of $B-L$ Higgs dominating the universe at its decay is the sole source for these generation processes. Here, the infrequent decays of the $B-L$ Higgs to heavy right handed neutrinos and successive prompt decays of these right handed neutrinos around the electroweak phase transition produce the observed baryon number asymmetry, while the complete decay of the same $B-L$ Higgs at a later epoch leads to a large lepton number asymmetry. The right amounts of both asymmetries are found to be obtained for the symmetry-breaking scale $v_\phi \sim 10^{10}~{\rm GeV}$. Moreover, in a close connection to the positivity of both asymmetries, seemingly only the normal mass hierarchy of light neutrino species works. Finally, the gravitational wave background from the topologically stable strong type-I cosmic strings, generated from the breaking of $U(1)_{B-L}$ symmetry, can be within the reach of future experiments such as ultimate DECIGO.