Optimal Conformal Prediction, E-values, Fuzzy Prediction Sets and Subsequent Decisions
Abstract
We make three contributions to conformal prediction. First, we propose fuzzy conformal confidence sets that offer a degree of exclusion, generalizing beyond the binary inclusion/exclusion offered by classical confidence sets. We connect fuzzy confidence sets to e-values to show this degree of exclusion is equivalent to an exclusion at different confidence levels, capturing precisely what e-values bring to conformal prediction. We show that a fuzzy confidence set is a predictive distribution with a more appropriate error guarantee. Second, we derive optimal conformal confidence sets by interpreting the minimization of the expected measure of the confidence set as an optimal testing problem against a particular alternative. We use this to characterize exactly in what sense traditional conformal prediction is optimal. Third, we generalize the inheritance of guarantees by subsequent minimax decisions from confidence sets to fuzzy confidence sets. All our results generalize beyond the exchangeable conformal setting to prediction sets for arbitrary models. In particular, we find that any valid test (e-value) for a hypothesis automatically defines a (fuzzy) prediction confidence set.