Probing Stellar Kinematics with the Time-Asymmetric Hanbury Brown and Twiss Effect
Abstract
Intensity interferometry (II) offers a powerful means to observe stellar objects with a high resolution. In this work, we demonstrate that II can also probe internal stellar kinematics by revealing a time-asymmetric Hanbury Brown and Twiss (HBT) effect, causing a measurable shift in the temporal correlation peak away from zero delay. We develop numerical models to simulate this effect for two distinct astrophysical scenarios: an emission-line circumstellar disk and an absorption-line binary system. Our simulations reveal a clear sensitivity of this temporal asymmetry to the system's inclination angle, velocity symmetry, and internal dynamics. This suggests that, with sufficiently high time resolution, II can be used to extract quantitative information about internal kinematics, offering a new observational window on stellar dynamics.