Mixed Triplet-Singlet Order Parameter in Decoupled Superconducting 1H Monolayers of Transition-Metal Dichalcogenides
Abstract
Understanding the emergence of unconventional superconductivity, where the order parameter deviates from simple isotropic s-wave pairing, is a central puzzle in condensed matter physics. Transition-metal dichalcogenides (TMDCs), though generally regarded as conventional superconductors, display signatures of this unusual behavior and thus provide a particularly intriguing platform to explore how exotic states arise. Here we investigate the misfit compound (SnS)$_{1.15}$(TaS$_2$), a heterostructure composed of alternating SnS and 1H-TaS$_2$ layers. Using transport, photoemission, and scanning tunneling spectroscopy, we demonstrate that the SnS layers effectively decouple the TaS$_2$ into electronically isolated 1H sheets. In this limit, the tunneling density of states reveals a clear two-gap superconducting spectrum with T$_c \sim$ 3.1 K. A theoretical model based on lack of inversion symmetry and finite-range attraction reproduces the observed multi-gap structure as a mixed singlet-triplet state. These results establish misfit compounds as a powerful platform for studying unconventional superconductivity in isolated 1H layers and for realizing multiple uncoupled superconductors within a single crystal.