When Avatars Have Personality: Effects on Engagement and Communication in Immersive Medical Training
Abstract
While virtual reality (VR) excels at simulating physical environments, its effectiveness for training complex interpersonal skills is limited by a lack of psychologically plausible virtual humans. This is a critical gap in high-stakes domains like medical education, where communication is a core competency. This paper introduces a framework that integrates large language models (LLMs) into immersive VR to create medically coherent virtual patients with distinct, consistent personalities, built on a modular architecture that decouples personality from clinical data. We evaluated our system in a mixed-method, within-subjects study with licensed physicians who engaged in simulated consultations. Results demonstrate that the approach is not only feasible but is also perceived by physicians as a highly rewarding and effective training enhancement. Furthermore, our analysis uncovers critical design principles, including a ``realism-verbosity paradox" where less communicative agents can seem more artificial, and the need for challenges to be perceived as authentic to be instructive. This work provides a validated framework and key insights for developing the next generation of socially intelligent VR training environments.