MALF: A Multi-Agent LLM Framework for Intelligent Fuzzing of Industrial Control Protocols
Abstract
Industrial control systems (ICS) are vital to modern infrastructure but increasingly vulnerable to cybersecurity threats, particularly through weaknesses in their communication protocols. This paper presents MALF (Multi-Agent LLM Fuzzing Framework), an advanced fuzzing solution that integrates large language models (LLMs) with multi-agent coordination to identify vulnerabilities in industrial control protocols (ICPs). By leveraging Retrieval-Augmented Generation (RAG) for domain-specific knowledge and QLoRA fine-tuning for protocol-aware input generation, MALF enhances fuzz testing precision and adaptability. The multi-agent framework optimizes seed generation, mutation strategies, and feedback-driven refinement, leading to improved vulnerability discovery. Experiments on protocols like Modbus/TCP, S7Comm, and Ethernet/IP demonstrate that MALF surpasses traditional methods, achieving a test case pass rate (TCPR) of 88-92% and generating more exception triggers (ETN). MALF also maintains over 90% seed coverage and Shannon entropy values between 4.2 and 4.6 bits, ensuring diverse, protocol-compliant mutations. Deployed in a real-world Industrial Attack-Defense Range for power plants, MALF identified critical vulnerabilities, including three zero-day flaws, one confirmed and registered by CNVD. These results validate MALF's effectiveness in real-world fuzzing applications. This research highlights the transformative potential of multi-agent LLMs in ICS cybersecurity, offering a scalable, automated framework that sets a new standard for vulnerability discovery and strengthens critical infrastructure security against emerging threats.