MoveOD: Synthesizing Origin-Destination Commute Distribution from U.S. Census Data
Abstract
High-resolution origin-destination (OD) tables are essential for a wide spectrum of transportation applications, from modeling traffic and signal timing optimization to congestion pricing and vehicle routing. However, outside a handful of data rich cities, such data is rarely available. We introduce MOVEOD, an open-source pipeline that synthesizes public data into commuter OD flows with fine-grained spatial and temporal departure times for any county in the United States. MOVEOD combines five open data sources: American Community Survey (ACS) departure time and travel time distributions, Longitudinal Employer-Household Dynamics (LODES) residence-to-workplace flows, county geometries, road network information from OpenStreetMap (OSM), and building footprints from OSM and Microsoft, into a single OD dataset. We use a constrained sampling and integer-programming method to reconcile the OD dataset with data from ACS and LODES. Our approach involves: (1) matching commuter totals per origin zone, (2) aligning workplace destinations with employment distributions, and (3) calibrating travel durations to ACS-reported commute times. This ensures the OD data accurately reflects commuting patterns. We demonstrate the framework on Hamilton County, Tennessee, where we generate roughly 150,000 synthetic trips in minutes, which we feed into a benchmark suite of classical and learning-based vehicle-routing algorithms. The MOVEOD pipeline is an end-to-end automated system, enabling users to easily apply it across the United States by giving only a county and a year; and it can be adapted to other countries with comparable census datasets. The source code and a lightweight browser interface are publicly available.