The local Gaussian correlation networks among return tails in the Chinese stock market
Abstract
Financial networks based on Pearson correlations have been intensively studied. However, previous studies may have led to misleading and catastrophic results because of several critical shortcomings of the Pearson correlation. The local Gaussian correlation coefficient, a new measurement of statistical dependence between variables, has unique advantages including capturing local nonlinear dependence and handling heavy-tailed distributions. This study constructs financial networks using the local Gaussian correlation coefficients between tail regions of stock returns in the Shanghai Stock Exchange. The work systematically analyzes fundamental network metrics including node centrality, average shortest path length, and entropy. Compared with the local Gaussian correlation network among positive tails and the conventional Pearson correlation network, the properties of the local Gaussian correlation network among negative tails are more sensitive to the stock market risks. This finding suggests researchers should prioritize the local Gaussian correlation network among negative tails. Future work should reevaluate existing findings using the local Gaussian correlation method.