Model-Behavior Alignment under Flexible Evaluation: When the Best-Fitting Model Isn't the Right One
Abstract
Linearly transforming stimulus representations of deep neural networks yields high-performing models of behavioral and neural responses to complex stimuli. But does the test accuracy of such predictions identify genuine representational alignment? We addressed this question through a large-scale model-recovery study. Twenty diverse vision models were linearly aligned to 4.5 million behavioral judgments from the THINGS odd-one-out dataset and calibrated to reproduce human response variability. For each model in turn, we sampled synthetic responses from its probabilistic predictions, fitted all candidate models to the synthetic data, and tested whether the data-generating model would re-emerge as the best predictor of the simulated data. Model recovery accuracy improved with training-set size but plateaued below 80%, even at millions of simulated trials. Regression analyses linked misidentification primarily to shifts in representational geometry induced by the linear transformation, as well as to the effective dimensionality of the transformed features. These findings demonstrate that, even with massive behavioral data, overly flexible alignment metrics may fail to guide us toward artificial representations that are genuinely more human-aligned. Model comparison experiments must be designed to balance the trade-off between predictive accuracy and identifiability-ensuring that the best-fitting model is also the right one.