Control VAR: a counterfactual based approach to inference in macroeconomics
Abstract
This paper addresses the challenges of giving a causal interpretation to vector autoregressions (VARs). I show that under independence assumptions VARs can identify average treatment effects, average causal responses, or a mix of the two, depending on the distribution of the policy. But what about situations in which the economist cannot rely on independence assumptions? I propose an alternative method, defined as control-VAR, which uses control variables to estimate causal effects. Control-VAR can estimate average treatment effects on the treated for dummy policies or average causal responses over time for continuous policies. The advantages of control-based approaches are demonstrated by examining the impact of natural disasters on the US economy, using Germany as a control. Contrary to previous literature, the results indicate that natural disasters have a negative economic impact without any cyclical positive effect. These findings suggest that control-VARs provide a viable alternative to strict independence assumptions, offering more credible causal estimates and significant implications for policy design in response to natural disasters.