Memory-induced long-range order drag
Abstract
Recent research has shown that memory, in the form of slow degrees of freedom, can induce a phase of long-range order (LRO) in locally-coupled fast degrees of freedom, producing power-law distributions of avalanches. In fact, such memory-induced LRO (MILRO) arises in a wide range of physical systems. Here, we show that MILRO can be transferred to coupled systems that have no memory of their own. As an example, we consider a stack of layers of spins with local feedforward couplings: only the first layer contains memory, while downstream layers are memory-free and locally interacting. Analytical arguments and simulations reveal that MILRO can indeed drag across the layers, enabling downstream layers to sustain intra-layer LRO despite having neither memory nor long-range interactions. This establishes a simple, yet generic mechanism for propagating collective activity through media without fine tuning to criticality, with testable implications for neuromorphic systems and laminar information flow in the brain cortex.