Engineering Atom-Photon Hybridization with Density-Modulated Atomic Ensembles in Coupled Cavities
Abstract
Radiation-matter hybridization allows atoms to serve as mediators of effective interactions between light modes and, conversely, to interact among themselves via light. Here we exploit the spatial structure of atomic ensembles to control the coupling between modes of distinct cavities, thereby reshaping the resulting atom-photon spectra. We show that extended homogeneous clouds suppress mode-mode couplings through destructive interference, whereas grated clouds can preserve them under specific Bragg conditions. This leads to mode-mode spectral subsplittings, where collectivity arises not only from the atom number but also from the ability to tune modes of different cavities independently. Our results establish spatially engineered atomic ensembles as a pathway to selective photon transfer between modes and precise control of many-body complexity.