Optimizing Mirror-Image Peptide Sequence Design for Data Storage via Peptide Bond Cleavage Prediction
Abstract
Traditional non-biological storage media, such as hard drives, face limitations in both storage density and lifespan due to the rapid growth of data in the big data era. Mirror-image peptides composed of D-amino acids have emerged as a promising biological storage medium due to their high storage density, structural stability, and long lifespan. The sequencing of mirror-image peptides relies on \textit{de-novo} technology. However, its accuracy is limited by the scarcity of tandem mass spectrometry datasets and the challenges that current algorithms encounter when processing these peptides directly. This study is the first to propose improving sequencing accuracy indirectly by optimizing the design of mirror-image peptide sequences. In this work, we introduce DBond, a deep neural network based model that integrates sequence features, precursor ion properties, and mass spectrometry environmental factors for the prediction of mirror-image peptide bond cleavage. In this process, sequences with a high peptide bond cleavage ratio, which are easy to sequence, are selected. The main contributions of this study are as follows. First, we constructed MiPD513, a tandem mass spectrometry dataset containing 513 mirror-image peptides. Second, we developed the peptide bond cleavage labeling algorithm (PBCLA), which generated approximately 12.5 million labeled data based on MiPD513. Third, we proposed a dual prediction strategy that combines multi-label and single-label classification. On an independent test set, the single-label classification strategy outperformed other methods in both single and multiple peptide bond cleavage prediction tasks, offering a strong foundation for sequence optimization.