The power of trees
Published: Oct 30, 2025
Last Updated: Oct 30, 2025
Authors:Ari Meir Brodsky, Assaf Rinot, Shira Yadai
Abstract
We give two consistent constructions of trees $T$ whose finite power $T^{n+1}$ is sharply different from $T^n$: 1. An $\aleph_1$-tree $T$ whose interval topology $X_T$ is perfectly normal, but $(X_T)^2$ is not even countably metacompact. 2. For an inaccessible $\kappa$ and a positive integer $n$, a $\kappa$-tree such that all of its $n$-derived trees are Souslin and all of its $(n+1)$-derived trees are special.