An introduction to Markovian open quantum systems
Abstract
This is a concise, pedagogical introduction to the dynamic field of open quantum systems governed by Markovian master equations. We focus on the mathematical and physical origins of the Lindblad equation, its unraveling in terms of pure-state trajectories, the structure of steady states with emphasis on the role of symmetry and conservation laws, and a sampling of the novel physical phenomena that arise from nonunitary dynamics (dissipation and measurements). This is far from a comprehensive summary of the field. Rather, the objective is to provide a conceptual foundation and physically illuminating examples that are useful to graduate students and researchers entering this subject. There are exercise problems and references for further reading throughout the notes.