Graph approach for observability analysis in power system dynamic state estimation
Abstract
The proposed approach yields a numerical method that provably executes in linear time with respect to the number of nodes and edges in a graph. The graph, constructed from the power system model, requires only knowledge of the dependencies between state-to-state and output-to-state variables within a state-space framework. While graph-based observability analysis methods exist for power system static-state estimation, the approach presented here is the first for dynamic-state estimation (DSE). We examine decentralized and centralized DSE scenarios and compare our findings with a well-established, albeit non-scalable, observability analysis method in the literature. When compared to the latter in a centralized DSE setting, our method reduced computation time by 1440x.