Time-Optimal Model Predictive Control for Linear Systems with Multiplicative Uncertainties
Abstract
This paper presents a time-optimal Model Predictive Control (MPC) scheme for linear discrete-time systems subject to multiplicative uncertainties represented by interval matrices. To render the uncertainty propagation computationally tractable, the set-valued error system dynamics are approximated using a matrix-zonotope-based bounding operator. Recursive feasibility and finite-time convergence are ensured through an adaptive terminal constraint mechanism. A key advantage of the proposed approach is that all the necessary bounding sets can be computed offline, substantially reducing the online computational burden. The effectiveness of the method is illustrated via a numerical case study on an orbital rendezvous maneuver between two satellites.