Role of Phase Fluctuation in Dynamic Competition Between Charge Order and Superconductivity in Cuprates
Abstract
Phase fluctuations are a key factor distinguishing nonthermal (ultrafast) and thermal phase transitions. Charge order in cuprates is characterized by short-range coherence while competing with superconductivity, and as such, it provides a representative case to study the role of phase fluctuation in coupled order parameter dynamics. In this work, we investigated the intertwined evolution of charge order and superconductivity in cuprate/manganite heterostructures using time-resolved resonant X-ray scattering. The resulting dynamics are analyzed within a space- and time-dependent nonperturbative model capturing both amplitude and phase dynamics. At low fluence, photo-induced suppression of superconductivity results in a nonthermal enhancement of charge order, underscoring the dynamic competition between charge order and superconductivity. With increasing fluence, the slowing down of melting and recovery dynamics is observed, indicating a critical role of phase fluctuations. At high fluence, both charge order and superconductivity remain suppressed for an extended time window due to decoupling between amplitude and phase dynamics and the delayed recovery of phase coherence. Our work underscores the importance of phase fluctuation for understanding the dynamic competition between order parameters in cuprates.