How Similar Are Grokipedia and Wikipedia? A Multi-Dimensional Textual and Structural Comparison
Abstract
The launch of Grokipedia, an AI-generated encyclopedia developed by Elon Musk's xAI, was presented as a response to perceived ideological and structural biases in Wikipedia, aiming to produce "truthful" entries via the large language model Grok. Yet whether an AI-driven alternative can escape the biases and limitations of human-edited platforms remains unclear. This study undertakes a large-scale computational comparison of 382 matched article pairs between Grokipedia and Wikipedia. Using metrics across lexical richness, readability, structural organization, reference density, and semantic similarity, we assess how closely the two platforms align in form and substance. The results show that while Grokipedia exhibits strong semantic and stylistic alignment with Wikipedia, it typically produces longer but less lexically diverse articles, with fewer references per word and more variable structural depth. These findings suggest that AI-generated encyclopedic content currently mirrors Wikipedia's informational scope but diverges in editorial norms, favoring narrative expansion over citation-based verification. The implications highlight new tensions around transparency, provenance, and the governance of knowledge in an era of automated text generation.