Structure-Aware Optimal Intervention for Rumor Dynamics on Networks: Node-Level, Time-Varying, and Resource-Constrained
Abstract
Rumor propagation in social networks undermines social stability and public trust, calling for interventions that are both effective and resource-efficient. We develop a node-level, time-varying optimal intervention framework that allocates limited resources according to the evolving diffusion state. Unlike static, centrality-based heuristics, our approach derives control weights by solving a resource-constrained optimal control problem tightly coupled to the network structure. Across synthetic and real-world networks, the method consistently lowers both the infection peak and the cumulative infection area relative to uniform and centrality-based static allocations. Moreover, it reveals a stage-aware law: early resources prioritize influential hubs to curb rapid spread, whereas later resources shift to peripheral nodes to eliminate residual transmission. By integrating global efficiency with fine-grained adaptability, the framework offers a scalable and interpretable paradigm for misinformation management and crisis response.