Probing the Penrose Process: Images of Split Hotspots and Their Observational Signatures
Abstract
While theoretically established for decades, the Penrose process - energy extraction from rotating black holes - still lacks clear observational evidence. A promising theoretical framework posits magnetic reconnection in the ergosphere as a trigger, causing a plasmoid to separate into an escaping positive-energy fragment and an infalling negative-energy one. In this work, we investigate the observational imprints of this scenario. We treat the energized plasmoid as a hotspot and calculate its light curves for a realistic plasma magnetization. In particular, we further compare with the scenario in which the plasmoid, after fragmentation, falls into the black hole with positive energy, while all other conditions remain unchanged. Our results reveal that the process of fragmentation generates distinct flares, whose characteristics depend heavily on whether the infalling fragment carries negative or positive energy. We propose that these differences serve as identifiable signatures of the Penrose process.