Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
The main goal of design obfuscation schemes is to protect sensitive design details from untrusted parties in the VLSI supply chain, including but not limited to off-shore foundries and untrusted end users. In this work, we provide a systematic red teaming approach to evaluate the security of design obfuscation approaches. Specifically, we propose security metrics and evaluation methodology for the scenarios where the adversary does not have access to a working chip. A case study on the RIPPER tool developed by the University of Florida indicates that more information is leaked about the structure of the original design than commonly considered.
The software supply chain is an increasingly common attack vector for malicious actors. The Node.js ecosystem has been subject to a wide array of attacks, likely due to its size and prevalence. To counter such attacks, the research community and practitioners have proposed a range of static and dynamic mechanisms, including process- and language-level sandboxing, permission systems, and taint tracking. Drawing on valuable insight from these works, this paper studies a runtime protection mechanism for (the supply chain of) Node.js applications with the ambitious goals of compatibility, automation, minimal overhead, and policy conciseness. Specifically, we design, implement and evaluate NodeShield, a protection mechanism for Node.js that enforces an application's dependency hierarchy and controls access to system resources at runtime. We leverage the up-and-coming SBOM standard as the source of truth for the dependency hierarchy of the application, thus preventing components from stealthily abusing undeclared components. We propose to enhance the SBOM with a notion of capabilities that represents a set of related system resources a component may access. Our proposed SBOM extension, the Capability Bill of Materials or CBOM, records the required capabilities of each component, providing valuable insight into the potential privileged behavior. NodeShield enforces the SBOM and CBOM at runtime via code outlining (as opposed to inlining) with no modifications to the original code or Node.js runtime, thus preventing unexpected, potentially malicious behavior. Our evaluation shows that NodeShield can prevent over 98% out of 67 known supply chain attacks while incurring minimal overhead on servers at less than 1ms per request. We achieve this while maintaining broad compatibility with vanilla Node.js and a concise policy language that consists of at most 7 entries per dependency.
Federated Learning (FL) is an emerging distributed machine learning paradigm enabling multiple clients to train a global model collaboratively without sharing their raw data. While FL enhances data privacy by design, it remains vulnerable to various security and privacy threats. This survey provides a comprehensive overview of more than 200 papers regarding the state-of-the-art attacks and defense mechanisms developed to address these challenges, categorizing them into security-enhancing and privacy-preserving techniques. Security-enhancing methods aim to improve FL robustness against malicious behaviors such as byzantine attacks, poisoning, and Sybil attacks. At the same time, privacy-preserving techniques focus on protecting sensitive data through cryptographic approaches, differential privacy, and secure aggregation. We critically analyze the strengths and limitations of existing methods, highlight the trade-offs between privacy, security, and model performance, and discuss the implications of non-IID data distributions on the effectiveness of these defenses. Furthermore, we identify open research challenges and future directions, including the need for scalable, adaptive, and energy-efficient solutions operating in dynamic and heterogeneous FL environments. Our survey aims to guide researchers and practitioners in developing robust and privacy-preserving FL systems, fostering advancements safeguarding collaborative learning frameworks' integrity and confidentiality.
With the widespread use of the internet, there is an increasing need to ensure the security and privacy of transmitted data. This has led to an intensified focus on the study of video steganography, which is a technique that hides data within a video cover to avoid detection. The effectiveness of any steganography method depends on its ability to embed data without altering the original video quality while maintaining high efficiency. This paper proposes a new method to video steganography, which involves utilizing a Genetic Algorithm (GA) for identifying the Region of Interest (ROI) in the cover video. The ROI is the area in the video that is the most suitable for data embedding. The secret data is encrypted using the Advanced Encryption Standard (AES), which is a widely accepted encryption standard, before being embedded into the cover video, utilizing up to 10% of the cover video. This process ensures the security and confidentiality of the embedded data. The performance metrics for assessing the proposed method are the Peak Signal to Noise Ratio (PSNR) and the encoding and decoding time. The results show that the proposed method has a high embedding capacity and efficiency, with a PSNR ranging between 64 and 75 dBs, which indicates that the embedded data is almost indistinguishable from the original video. Additionally, the method can encode and decode data quickly, making it efficient for real time applications.
Biometric authentication using physiological signals offers a promising path toward secure and user-friendly access control in wearable devices. While electrocardiogram (ECG) signals have shown high discriminability, their intrusive sensing requirements and discontinuous acquisition limit practicality. Photoplethysmography (PPG), on the other hand, enables continuous, non-intrusive authentication with seamless integration into wrist-worn wearable devices. However, most prior work relies on high-frequency PPG (e.g., 75 - 500 Hz) and complex deep models, which incur significant energy and computational overhead, impeding deployment in power-constrained real-world systems. In this paper, we present the first real-world implementation and evaluation of a continuous authentication system on a smartwatch, We-Be Band, using low-frequency (25 Hz) multi-channel PPG signals. Our method employs a Bi-LSTM with attention mechanism to extract identity-specific features from short (4 s) windows of 4-channel PPG. Through extensive evaluations on both public datasets (PTTPPG) and our We-Be Dataset (26 subjects), we demonstrate strong classification performance with an average test accuracy of 88.11%, macro F1-score of 0.88, False Acceptance Rate (FAR) of 0.48%, False Rejection Rate (FRR) of 11.77%, and Equal Error Rate (EER) of 2.76%. Our 25 Hz system reduces sensor power consumption by 53% compared to 512 Hz and 19% compared to 128 Hz setups without compromising performance. We find that sampling at 25 Hz preserves authentication accuracy, whereas performance drops sharply at 20 Hz while offering only trivial additional power savings, underscoring 25 Hz as the practical lower bound. Additionally, we find that models trained exclusively on resting data fail under motion, while activity-diverse training improves robustness across physiological states.
Accurately assessing software vulnerabilities is essential for effective prioritization and remediation. While various scoring systems exist to support this task, their differing goals, methodologies and outputs often lead to inconsistent prioritization decisions. This work provides the first large-scale, outcome-linked empirical comparison of four publicly available vulnerability scoring systems: the Common Vulnerability Scoring System (CVSS), the Stakeholder-Specific Vulnerability Categorization (SSVC), the Exploit Prediction Scoring System (EPSS), and the Exploitability Index. We use a dataset of 600 real-world vulnerabilities derived from four months of Microsoft's Patch Tuesday disclosures to investigate the relationships between these scores, evaluate how they support vulnerability management task, how these scores categorize vulnerabilities across triage tiers, and assess their ability to capture the real-world exploitation risk. Our findings reveal significant disparities in how scoring systems rank the same vulnerabilities, with implications for organizations relying on these metrics to make data-driven, risk-based decisions. We provide insights into the alignment and divergence of these systems, highlighting the need for more transparent and consistent exploitability, risk, and severity assessments.
This work introduces CAI Fluency, an an educational platform of the Cybersecurity AI (CAI) framework dedicated to democratizing the knowledge and application of cybersecurity AI tools in the global security community. The main objective of the CAI framework is to accelerate the widespread adoption and effective use of artificial intelligence-based cybersecurity solutions, pathing the way to vibe-hacking, the cybersecurity analogon to vibe-coding. CAI Fluency builds upon the Framework for AI Fluency, adapting its three modalities of human-AI interaction and four core competencies specifically for cybersecurity applications. This theoretical foundation ensures that practitioners develop not just technical skills, but also the critical thinking and ethical awareness necessary for responsible AI use in security contexts. This technical report serves as a white-paper, as well as detailed educational and practical guide that helps users understand the principles behind the CAI framework, and educates them how to apply this knowledge in their projects and real-world security contexts.
DDoS attacks are one of the most prevalent and harmful cybersecurity threats faced by organizations and individuals today. In recent years, the complexity and frequency of DDoS attacks have increased significantly, making it challenging to detect and mitigate them effectively. The study analyzes various types of DDoS attacks, including volumetric, protocol, and application layer attacks, and discusses the characteristics, impact, and potential targets of each type. It also examines the existing techniques used for DDoS attack detection, such as packet filtering, intrusion detection systems, and machine learning-based approaches, and their strengths and limitations. Moreover, the study explores the prevention techniques employed to mitigate DDoS attacks, such as firewalls, rate limiting , CPP and ELD mechanism. It evaluates the effectiveness of each approach and its suitability for different types of attacks and environments. In conclusion, this study provides a comprehensive overview of the different types of DDoS attacks, their detection, and prevention techniques. It aims to provide insights and guidelines for organizations and individuals to enhance their cybersecurity posture and protect against DDoS attacks.
Elliptic Curve Cryptography (ECC) is a fundamental component of modern public-key cryptosystems that enable efficient and secure digital signatures, key exchanges, and encryption. Its core operation, scalar multiplication, denoted as $k \cdot P$, where $P$ is a base point and $k$ is a private scalar, relies heavily on the secrecy and unpredictability of $k$. Conventionally, $k$ is selected using user input or pseudorandom number generators. However, in resource-constrained environments with weak entropy sources, these approaches may yield low-entropy or biased scalars, increasing susceptibility to side-channel and key recovery attacks. To mitigate these vulnerabilities, we introduce an optimization-driven scalar generation method that explicitly maximizes bit-level entropy. Our approach uses differential evolution (DE), a population-based metaheuristic algorithm, to search for scalars whose binary representations exhibit maximal entropy, defined by an even and statistically uniform distribution of ones and zeros. This reformulation of scalar selection as an entropy-optimization problem enhances resistance to entropy-based cryptanalytic techniques and improves overall unpredictability. Experimental results demonstrate that DE-optimized scalars achieve entropy significantly higher than conventionally generated scalars. The proposed method can be integrated into existing ECC-based protocols, offering a deterministic, tunable alternative to traditional randomness, ideal for applications in blockchain, secure messaging, IoT, and other resource-constrained environments.
In February 2024, after building trust over two years with project maintainers by making a significant volume of legitimate contributions, GitHub user "JiaT75" self-merged a version of the XZ Utils project containing a highly sophisticated, well-disguised backdoor targeting sshd processes running on systems with the backdoored package installed. A month later, this package began to be distributed with popular Linux distributions until a Microsoft employee discovered the backdoor while investigating how a recent system upgrade impacted the performance of SSH authentication. Despite its potential global impact, no tooling exists for monitoring and identifying anomalous behavior by personas contributing to other open-source projects. This paper demonstrates how Open Source Intelligence (OSINT) data gathered from GitHub contributions, analyzed using graph databases and graph theory, can efficiently identify anomalous behaviors exhibited by the "JiaT75" persona across other open-source projects.
Secure aggregation is a common technique in federated learning (FL) for protecting data privacy from both curious internal entities (clients or server) and external adversaries (eavesdroppers). However, in dynamic and resource-constrained environments such as low Earth orbit (LEO) satellite networks, traditional secure aggregation methods fall short in two aspects: (1) they assume continuous client availability while LEO satellite visibility is intermittent and irregular; (2) they consider privacy in each communication round but have overlooked the possible privacy leakage through multiple rounds. To address these limitations, we propose LTP-FLEO, an asynchronous FL framework that preserves long-term privacy (LTP) for LEO satellite networks. LTP-FLEO introduces (i) privacy-aware satellite partitioning, which groups satellites based on their predictable visibility to the server and enforces joint participation; (ii) model age balancing, which mitigates the adverse impact of stale model updates; and (iii) fair global aggregation, which treats satellites of different visibility durations in an equitable manner. Theoretical analysis and empirical validation demonstrate that LTP-FLEO effectively safeguards both model and data privacy across multi-round training, promotes fairness in line with satellite contributions, accelerates global convergence, and achieves competitive model accuracy.
Intrusion Tolerant Systems (ITSs) have become increasingly critical due to the rise of multi-domain adversaries exploiting diverse attack surfaces. ITS architectures aim to tolerate intrusions, ensuring system compromise is prevented or mitigated even with adversary presence. Existing ITS solutions often employ Risk Managers leveraging public security intelligence to adjust system defenses dynamically against emerging threats. However, these approaches rely heavily on databases like NVD and ExploitDB, which require manual analysis for newly discovered vulnerabilities. This dependency limits the system's responsiveness to rapidly evolving threats. HAL 9000, an ITS Risk Manager introduced in our prior work, addressed these challenges through machine learning. By analyzing descriptions of known vulnerabilities, HAL 9000 predicts and assesses new vulnerabilities automatically. To calculate the risk of a system, it also incorporates the Exploitability Probability Scoring system to estimate the likelihood of exploitation within 30 days, enhancing proactive defense capabilities. Despite its success, HAL 9000's reliance on NVD and ExploitDB knowledge is a limitation, considering the availability of other sources of information. This extended work introduces a custom-built scraper that continuously mines diverse threat sources, including security advisories, research forums, and real-time exploit proofs-of-concept. This significantly expands HAL 9000's intelligence base, enabling earlier detection and assessment of unverified vulnerabilities. Our evaluation demonstrates that integrating scraper-derived intelligence with HAL 9000's risk management framework substantially improves its ability to address emerging threats. This paper details the scraper's integration into the architecture, its role in providing additional information on new threats, and the effects on HAL 9000's management.
Secure Multi-Party Computation (MPC) offers a practical foundation for privacy-preserving machine learning at the edge, with MPC commonly employed to support nonlinear operations. These MPC protocols fundamentally rely on Oblivious Transfer (OT), particularly Correlated OT (COT), to generate correlated randomness essential for secure computation. Although COT generation is efficient in conventional two-party settings with resource-rich participants, it becomes a critical bottleneck in real-world inference on resource-constrained devices (e.g., IoT sensors and wearables), due to both communication latency and limited computational capacity. To enable real-time secure inference, we introduce Silentflow, a highly efficient Trusted Execution Environment (TEE)-assisted protocol that eliminates communication in COT generation. We tackle the core performance bottleneck-low computational intensity-through structured algorithmic decomposition: kernel fusion for parallelism, Blocked On-chip eXpansion (BOX) to improve memory access patterns, and vectorized batch operations to maximize memory bandwidth utilization. Through design space exploration, we balance end-to-end latency and resource demands, achieving up to 39.51x speedup over state-of-the-art protocols. By offloading COT computations to a Zynq-7000 SoC, SilentFlow accelerates PPMLaaS inference on the ImageNet dataset under resource constraints, achieving a 4.62x and 3.95x speedup over Cryptflow2 and Cheetah, respectively.
Incident response (IR) requires fast, coordinated, and well-informed decision-making to contain and mitigate cyber threats. While large language models (LLMs) have shown promise as autonomous agents in simulated IR settings, their reasoning is often limited by a lack of access to external knowledge. In this work, we present AutoBnB-RAG, an extension of the AutoBnB framework that incorporates retrieval-augmented generation (RAG) into multi-agent incident response simulations. Built on the Backdoors & Breaches (B&B) tabletop game environment, AutoBnB-RAG enables agents to issue retrieval queries and incorporate external evidence during collaborative investigations. We introduce two retrieval settings: one grounded in curated technical documentation (RAG-Wiki), and another using narrative-style incident reports (RAG-News). We evaluate performance across eight team structures, including newly introduced argumentative configurations designed to promote critical reasoning. To validate practical utility, we also simulate real-world cyber incidents based on public breach reports, demonstrating AutoBnB-RAG's ability to reconstruct complex multi-stage attacks. Our results show that retrieval augmentation improves decision quality and success rates across diverse organizational models. This work demonstrates the value of integrating retrieval mechanisms into LLM-based multi-agent systems for cybersecurity decision-making.
Timely detection of hardware vulnerabilities during the early design stage is critical for reducing remediation costs. Existing early detection techniques often require specialized security expertise, limiting their usability. Recent efforts have explored the use of large language models (LLMs) for Verilog vulnerability detection. However, LLMs struggle to capture the structure in Verilog code, resulting in inconsistent detection results. To this end, we propose VerilogLAVD, the first LLM-aided graph traversal rule generation approach for Verilog vulnerability detection. Our approach introduces the Verilog Property Graph (VeriPG), a unified representation of Verilog code. It combines syntactic features extracted from the abstract syntax tree (AST) with semantic information derived from control flow and data dependency graphs. We leverage LLMs to generate VeriPG-based detection rules from Common Weakness Enumeration (CWE) descriptions. These rules guide the rule executor that traversal VeriPG for potential vulnerabilities. To evaluate VerilogLAVD, we build a dataset collected from open-source repositories and synthesized data. In our empirical evaluation on 77 Verilog designs encompassing 12 CWE types, VerilogLAVD achieves an F1-score of 0.54. Compared to the LLM-only and LLM with external knowledge baselines, VerilogLAVD improves F1-score by 0.31 and 0.27, respectively.
Large Language Models (LLMs) have exhibited remarkable capabilities but remain vulnerable to jailbreaking attacks, which can elicit harmful content from the models by manipulating the input prompts. Existing black-box jailbreaking techniques primarily rely on static prompts crafted with a single, non-adaptive strategy, or employ rigid combinations of several underperforming attack methods, which limits their adaptability and generalization. To address these limitations, we propose MAJIC, a Markovian adaptive jailbreaking framework that attacks black-box LLMs by iteratively combining diverse innovative disguise strategies. MAJIC first establishes a ``Disguise Strategy Pool'' by refining existing strategies and introducing several innovative approaches. To further improve the attack performance and efficiency, MAJIC formulate the sequential selection and fusion of strategies in the pool as a Markov chain. Under this formulation, MAJIC initializes and employs a Markov matrix to guide the strategy composition, where transition probabilities between strategies are dynamically adapted based on attack outcomes, thereby enabling MAJIC to learn and discover effective attack pathways tailored to the target model. Our empirical results demonstrate that MAJIC significantly outperforms existing jailbreak methods on prominent models such as GPT-4o and Gemini-2.0-flash, achieving over 90\% attack success rate with fewer than 15 queries per attempt on average.
The rapid adoption of chiplet-based heterogeneous integration is reshaping semiconductor design by enabling modular, scalable, and faster time-to-market solutions for AI and high-performance computing. However, multi-vendor assembly in post-fabrication environments fragments the supply chain and exposes SiP systems to serious security threats, including cloning, overproduction, and chiplet substitution. Existing authentication solutions depend on trusted integrators or centralized security anchors, which can expose sensitive data or create single points of failure. We introduce AuthenTree, a distributed authentication framework that leverages multi-party computation (MPC) in a scalable tree-based architecture, removing the need for dedicated security hardware or centralized trust. AuthenTree enables secure chiplet validation without revealing raw signatures, distributing trust across multiple integrator chiplets. Our evaluation in five SiP benchmarks demonstrates that AuthenTree imposes minimal overhead, with an area as low as 0.48% (7,000 sq-micrometers), an overhead power under 0.5%, and an authentication latency below 1 microsecond, surpassing previous work in some cases by 700 times. These results establish AuthenTree as an efficient, robust, and scalable solution for next-generation chiplet-based security in zero-trust SiP environments.
Cyberattacks are increasing, and securing against such threats is costing industries billions of dollars annually. Threat Modeling, that is, comprehending the consequences of these attacks, can provide critical support to cybersecurity professionals, enabling them to take timely action and allocate resources that could be used elsewhere. Cybersecurity is heavily dependent on threat modeling, as it assists security experts in assessing and mitigating risks related to identifying vulnerabilities and threats. Recently, there has been a pressing need for automated methods to assess attack descriptions and forecast the future consequences of the increasing complexity of cyberattacks. This study examines how Natural Language Processing (NLP) and deep learning can be applied to analyze the potential impact of cyberattacks by leveraging textual descriptions from the MITRE Common Weakness Enumeration (CWE) database. We emphasize classifying attack consequences into five principal categories: Availability, Access Control, Confidentiality, Integrity, and Other. This paper investigates the use of Bidirectional Encoder Representations from Transformers (BERT) in combination with Hierarchical Attention Networks (HANs) for Multi-label classification, evaluating their performance in comparison with conventional CNN and LSTM-based models. Experimental findings show that BERT achieves an overall accuracy of $0.972$, far higher than conventional deep learning models in multi-label classification. HAN outperforms baseline forms of CNN and LSTM-based models on specific cybersecurity labels. However, BERT consistently achieves better precision and recall, making it more suitable for predicting the consequences of a cyberattack.