Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
The formation of Neptune planets with orbital periods less than 10\,days remains uncertain. They might have developed similarly to longer-period counterparts, emerged from rare collisions between smaller planets, or could be the remnant cores of stripped giant planets. Characterizing a large number of them is important to advance our understanding of how they form and evolve. We aimed at confirming the planetary nature and characterizing the properties of a close-in Neptune-type transiting exoplanet candidate revealed by TESS around the star TOI-5795 (V = 10.7 mag), 162 pc away from the Sun. We monitored TOI-5795 with the HARPS spectrograph for two months to quantify periodic variations in radial velocity (RV) to estimate the mass of the smaller companion. We combined these RV and TESS photometry. High-angular-resolution speckle and adaptive optics imaging excluded contamination from nearby sources. We found that the parent star is a metal-poor (${\rm [Fe/H]}=-0.27\pm0.07$), G3\,V star ($T_{\rm eff}=5718\pm50$\,K), with $R_{\star}=1.082\pm0.026\,R_{\sun}$, $M_{\star}=0.901^{+0.055}_{-0.037}\,M_{\sun}$ and $10.2^{+2.5}_{-3.3}$\,Gyr. We estimated that the planet has an orbital period of $P_{\rm orb}=6.1406325 \pm 0.0000054$ days and an orbital eccentricity compatible with zero. Having a mass of $23.66^{+4.09}_{-4.60}\,M_{\oplus}$, a radius of $5.62\pm 0.11\,R_{\oplus}$ and an equilibrium temperature of $1136\pm18$\,K, it can be considered as a hot super-Neptune at the edge of the Neptune desert. We simulated planet-formation processes but found almost no successful matches to the observed planet's mass and orbit, suggesting that post-formation dynamical events may have shaped its current state.
We present a first-order analytical model for line-of-sight velocity residuals, defined as the difference between observed velocities and those predicted by a fiducial model, assuming a flared, nearly axisymmetric disk with the perturbations in disk surface height $\delta h(r)$, inclination $\delta i(r)$, and position angle $\delta\mathrm{PA}(r)$. Introducing projection-deprojection mapping between sky-plane and disk-frame coordinates, we demonstrate that the normalized velocity residuals exhibit Fourier components up to the third harmonic ($\sin3\phi$ and $\cos3\phi$). Moreover, we show that the radial profiles of $\delta h(r)$, $\delta i(r)$, and $\delta\mathrm{PA}(r)$ can be uniquely recovered from the data by solving a linear inverse problem. For comparison, we highlight factors that are not considered in previous models. We also outline how our framework can be extended beyond the first-order residuals and applied to additional observables, such as line intensities and widths.
Carbonate-silicate weathering feedback is thought to stabilize Earth's climate on geologic timescales. If climate warms, faster mineral dissolution and increased rainfall speed up weathering, increasing CO2 drawdown and opposing the initial warming. Limits to where this feedback might operate on terrestrial exoplanets with N2-O2-CO2-H2O atmospheres are used to define the 'habitable zone'-the range of orbits around a star where liquid water can be stable on a planet's surface. However, the impacts on long-term habitability of randomly varying volcanic outgassing, tectonic collisions, and tectonic parameters (e.g., number of continental plates, size of plates, plate velocity) remain poorly understood. In this work, we present an idealized and broadly-applicable quasi-2D model of the long-term climate stability of abiotic Earth-twins. The model tracks atmospheric CO2 as 'disks' collide, promoting uplift and supplying new weatherable minerals through erosion. Without resupply, soils become less weatherable and the feedback's strength wanes, making a planet susceptible to catastrophic warming events or hard snowballs where the surface becomes frozen over. We find that tectonic uplift spurred by continental collisions cannot be the sole supplier of weatherable minerals within our model framework, as such climates either become uninhabitably hot (for complex life) as soils become leached of weatherable minerals or experience extreme swings in temperature over short timescales. This conclusion is strengthened when taking into account the destabilizing effects of outgassing variability and increasing stellar luminosity. In addition to frequent collisions, other resupply mechanisms for weatherable minerals, such as wind-driven dust transport, glacial erosion, and/or seafloor weathering, are likely required for long-term stability on Earth-like terrestrial exoplanets.
Accretion shocks are thought to play a crucial role in the early stages of star and planet formation, but their direct observational evidence remains elusive, particularly regarding the molecular tracers of these processes. In this work, we searched for features of accretion shocks by observing the emission of SO and SO$_2$ using ALMA in Band 6 towards nearby Class I protostars. We analyze the SO and SO$_2$ emission from Oph IRS 63, DK Cha, and L1527, which have different disk inclination angles, ranging from nearly face-on to edge-on. SO emission is found to be concentrated in rings at the centrifugal barriers of the infalling envelopes. These rings are projected onto the plane of the sky as ellipses or parallel slabs, depending on the inclination angles. Spiral-like streamers with SO emission are also common, with warm ($T_{\rm ex} > 50$ K) and even hot ($T_{\rm ex} \gtrsim 100$ K) spots or segments of SO$_2$ observed near the centrifugal barriers. Inspired by these findings, we present a model that consistently explains the accretion shock traced by SO and SO$_2$, where the shock occurs primarily in two regions: (1) the centrifugal barriers, and (2) the surface of the disk-like inner envelope outside the centrifugal barrier. The outer envelope gains angular momentum through outflows, causing it to fall onto the midplane at or outside the centrifugal barrier, leading to a disk-like inner envelope that is pressure-confined by the accretion shock and moves in a rotating-and-infalling motion. We classify the streamers into two types--those in the midplane and those off the midplane. These streamers interact with the inner envelopes in different ways, resulting in different patterns of shocked regions. We suggest that the shock-related chemistry at the surfaces of the disk and the disk-like inner envelope warrants further special attention.
Understanding the provenance of CI and CM chondrites, the most primitive materials in our meteorite collections, is critical for shedding light on the Solar System's early evolution and contextualizing findings from recent sample return missions. Here we show that the parent bodies of CM chondrites originate from the Saturn formation region, whereas those of CI chondrites originate essentially from the primordial trans-Uranian disk. Using Nbody simulations to investigate the effect of giant planet growth and inward Type-I migration, along with the current observed distribution of CM, CI, and comet-like P types bodies in the asteroid belt, we demonstrate that CI- and CM-like bodies must have been implanted at different times in the belt. In contrast, CI and comet-like bodies were implanted at the same time. These different implantation periods are imposed by the fact that the gas disk profile entirely governs the radial distribution of bodies implanted by aerodynamic drag in the asteroid belt. A preferred location coincides with the inner edge of a gap opened by Jupiter. Saturn's growth likely drove the migration of CM-like bodies. In contrast, CI and comet-like bodies were transported at a later stage during the outward migration of Uranus and Neptune, driven by remaining planetesimals. Since CM chondrites are chondrule-rich, it follows that chondrule formation occurred mostly inward of the ice giants formation zone (under 10 au). A byproduct of our simulations is that only CM-like, not CI-like, bodies contributed to the water budget of the telluric planets.
Wavelength calibration is a key factor for high-resolution spectroscopic measurements for precision radial velocities. Hollow-cathode lamps (e.g., ThAr), absorption cells (e.g., iodine cell), dielectric coated Fabry-P\'erot etalons and laser frequency combs have been implemented over the years for precise wavelength calibration and wavelength drift measurements. However, due to their various impediments as wavelength calibrators, investigations of alternative methods remain of prime interest. In this paper, we examined the feasibility of low-cost (~ $1000) commercially available solid fused silica etalon with a broadband metallic coating as a calibrator. We studied the behaviour for two cavity spacings (free spectral range of 1/cm and 0.5/cm) with temperature from theoretical derivation and experimental data. Our setup had a temperature stability of 0.8 mK for a calibrator system using an off-the-shelf dewar flask with active stabilisation. Our result from radial velocity drift measurements demonstrated that such a calibration system is capable of providing higher signal-to-noise calibration and better nightly drift measurement relative to ThAr in the wavelength range between 470 nm and 780 nm. A similar result has been previously found for Fabry-P\'erot etalons, and although the metalon solution lacks the efficiency of an etalon, it does offers a cost-effective broadband solution, which should be less prone to aging relative to complex dielectric mirror coatings. Nonetheless, long-term monitoring is required to understand the metalon behaviour in detail.
Convective flow in Earth's iron-rich liquid core drives self-sustained dynamo action, generating Earth's magnetic field, which is strongest among all terrestrial planets of the solar system. Rock records show that this magnetic field has been operative in Earth for at least 3.4 billion years (b.y). However, advanced high pressure experiments have revised the value of the thermal conductivity of the outer core, which implies an age for the inner core of less than 1 b.y., when compositional convection begins. This creates a puzzle, with a gap between the observations of an early magnetic field on Earth and the young inner core. Previous work has suggested that the pre-inner core dynamo could have been generated in a magma ocean (MO) at the base of the mantle; however, the fluid dynamics of this scenario have received little attention. Here we numerically model the non-magnetic rotating flow in a MO above a convectively stable core in a configuration representing the pre-inner core days of Earth's evolution. Simulations here explore the importance of several dimensionless parameters on coupled core-MO convection -- the Rayleigh number, the ocean/core thermal diffusivity ratio, thermal expansion coefficient ratio, viscosity ratio, and layer thickness ratio. It is found that the MO can easily drive a flow of comparable magnitude in the core, and an approximately linear relationship is observed between the ratio of root-mean-square velocities in the core and the ocean, $(u_c^{RMS}/u_o^{RMS})$, and $(\Nu_o-1)$, where $\Nu_o$ is the Nusselt number for the MO, for the $\Nu_o$ of order 1 to 10 considered. Radial and azimuthal components of the core flow are of similar magnitude, so that, with comparable toroidal and poloidal components, we speculate that the MO-driven core flow could drive an early dynamo.
During a hypervelocity impact, both the impactor and target materials evaporate, generating an impact vapor plume with temperatures reaching several thousand K. As the plume cools through adiabatic expansion, chemical reactions are predicted to quench, leading to a non-equilibrium composition. However, it is still unclear how chemical reactions proceed during the cooling impact vapor plume and lead to the synthesis of organic molecules. In this study, to investigate the evolution of chemical composition within impact vapor plumes, we conducted a Monte Carlo chemical reaction simulation for complex organic synthesis, developed in our previous work. Our model does not rely on a predefined reaction network; instead, it utilizes imposed conditions for chemical changes and an approximate method for calculating reaction rates suited to our objectives. Additionally, we developed a new approach to couple these chemical reaction calculations with the rapid temperature and pressure decay in the vapor plume. Results show diverse organic molecule production depending on the impactor materials assumed in this study. These products include important precursors to biomolecules such as amino acids, sugars, and nucleobases. On the other hand, for all impactor compositions, the abundance of biomolecules themselves remains extremely low throughout the reactions from an impact to quenching. Therefore, our results suggest that biomolecules are not directly produced in impact vapor plumes but rather synthesized through reactions of these precursor molecules in aqueous solutions, following H2O condensation as the vapor plume cools. Many of the detected organic compounds, including the precursor molecules such as imine compounds and formamide, are not included in the reaction networks of previous kinetic model simulations, and their formation has not been predicted.
As space traffic continues to increase in the cislunar region, accurately determining the trajectories of objects operating within this domain becomes critical. However, due to the combined gravitational influences of the Earth and Moon, orbital dynamics in this region are highly nonlinear and often exhibit chaotic behavior, posing significant challenges for trajectory determination. Many existing methods attempt to address this complexity using machine learning models, advanced optimization techniques, or sensors that directly measure distance to the target, approaches that often increase computational burden and system complexity. This work presents a novel initial orbit determination (IOD) algorithm for cislunar objects based solely on three angle-only measurements taken at three discrete times. The core methodology builds upon a differential corrections framework which iteratively refines the target's trajectory to satisfy line-of-sight constraints. Numerical simulations demonstrate that the algorithm enables accurate IOD using minimal observational data, making it particularly suited for onboard implementation in resource-constrained cislunar missions.
Evidence suggests the existence of a large planet in the outer Solar System, Planet Nine, with a predicted mass of 6.6 +2.6 / -1.7 Earth masses (Brown et al., 2024). Based on mass radius composition models, planet formation theory, and confirmed exoplanets with low mass and radius uncertainty and equilibrium temperature less than 600 K, we determine the most likely composition for Planet Nine is a mini-Neptune with a radius in the range 2.0 to 2.6 Earth radii and a H-He envelope fraction in the range of 0.6 percent to 3.5 percent by mass. Using albedo estimates for a mini-Neptune extrapolated from V-band data for the Solar Systems giant planets gives albedo values for Planet Nine in the range of 0.47 to 0.33. Using the most likely orbit and aphelion estimates from the Planet Nine Reference Population 3.0, we estimate Planet Nines absolute magnitude in the range of -6.1 to -5.2 and apparent magnitude in the range of +21.9 to +22.7. Finally, we estimate that, if the hypothetical Planet Nine exists and is detected by upcoming surveys, it will have a resolvable disk using some higher resolution world class telescopes.
Context. Phase curves of small bodies are useful tools to obtain their absolute magnitudes and phase coefficients. The former relates to the object's apparent brightness, while the latter relates to how the light interacts with the surface. Data from multi-wavelength photometric surveys, which usually serendipitously observe small bodies, are becoming the cornerstone of large statistical studies of the Solar System. Nevertheless, to our knowledge, all studies have been carried out in visible wavelengths. Aims. We aim to provide the first catalog of absolute magnitudes in near-infrared filters (Y, J, H, and K). We will study the applicability of a non-linear model to these data and compare it with a simple linear model. Methods. We compute the absolute magnitudes using two photometric models: the HG* 12 and the linear model. We employ a combination of Bayesian inference and Monte Carlo sampling to calculate the probability distributions of the absolute magnitudes and their corresponding phase coefficients. We use the combination of four near-infrared photometric catalogs to create our input database. Results. We produced the first catalog of near-infrared magnitudes. We obtained absolute magnitudes for over 10 000 objects (with at least one absolute magnitude measured), with about 180 objects having four absolute magnitudes. We confirmed that a linear model that fits the phase curves produces accurate results. Since a linear behavior well describes the curves, fitting to a restricted phase angle range (in particular, larger than 9.5 deg) does not substantially affect the results. Finally, we also detect a phase-coloring effect in the near-infrared, as observed in visible wavelengths for asteroids and trans-Neptunian objects.
Understanding reflectance-related quantities for worlds enables effective comparative planetology and strengthens mission planning and execution. Measurements of these properties for Earth, especially its geometric albedo and phase function, have been difficult to achieve due to our Terrestrial situation -- it is challenging to obtain planetary-scale brightness measurements for the world we stand on. Using a curated dataset of visual phase-dependent, disk-averaged observations of Earth taken from the ground and spacecraft, alongside a physical-statistical model, this work arrives at a definitive value for the visual geometric albedo of our planet: 0.242 (+0.005/-0.004). This albedo constraint is up 30--40% smaller than earlier, widely-quoted values. The physical-statistical model enables retrieval-like inferences to be performed on phase curves, and includes contributions from optically thick clouds, optically thin aerosols, Rayleigh scattering, ocean glint, gas absorption, and Lambertian surface reflectance. Detailed application of this inverse model to Earth's phase curve quantifies contributions of these different processes to the phase-dependent brightness of the Pale Blue Dot. Model selection identifies a scenario where aerosol forward scattering results in a false negative for surface habitability detection. Observations of phase curves for Earth at redder-optical or near-infrared wavelengths could disentangle ocean glint effects from aerosol forward scattering and would help with understanding the utility of phase curve observations for the under-development Habitable Worlds Observatory.
PDS 70c is a source of Ha emission and variable sub-mm signal. Understanding its emission mechanisms may enable observations of accretion rates and physical conditions in the circum-planetary environment. We report ALMA observations of PDS 70 at 145 GHz (Band 4), 343.5 GHz (Band 7) and 671 GHz (Band 9) and compare with data at 97.5 GHz (Band 3), taken within two months. The radio spectrum (SED) is analyzed with analytic circumplanetary disk (CPD). In a novel approach we include the free-free continuum from HI, metals (e.g. KI) and H-. New detections in Bands 3 (tentative at 2.6sigma), 4 (5sigma), and 7 (re-detected at 9sigma) are consistent with optically thick thermal emission from PDS 70c (spectral index alpha 2+-0.2). However, a Band 9 non-detection lies 2.6sigma below an optically thick extrapolation. A viscous dusty disk is inconsistent with the data, even with the inclusion of ionised jets. Interestingly, the central temperatures in such CPD models are high enough to ionise HI, with huge emission measures and an optically thick spectrum that marginally accounts for the SED (within 3sigma of Band 9). By contrast, uniform-slab models suggest much lower emission measures to account for the Band 9 drop, with ionisation fractions ~1E-7 , and an outer radius of ~0.1au. Such conditions are recovered if the CPD interacts with a planetary magnetic field, leading to a radially variable viscosity alpha(R)<~1 and central temperatures ~1E3K that regulate metal ionisation. However, the H- opacity still results in an optically thick SED, overshooting Band 9. We find that the optically thin turnover at ~600GHz is only recovered if a thin shocked layer is present at the CPD surface, as suggested by simulations. A photospheric shock or accretion funnels are ruled out as radio emission sources because their small solid angles require T~1e6K, which are unrealistic planetary shock accretion.
3I/ATLAS is the third macroscopic interstellar object detected traversing the Solar System. Since its initial discovery on UT 01 July 2025, hundreds of hours on a range of observational facilities have been dedicated to measure the physical properties of this object. These observations have provided astrometry to refine the orbital solution, photometry to measure the color, a rotation period and secular light curve, and spectroscopy to characterize the composition of the coma. Here, we report precovery photometry of 3I/ATLAS as observed with NASA's Transiting Exoplanet Survey Satellite (TESS). 3I/ATLAS was observed nearly continuously by TESS from UT 07 May 2025 to 02 June 2025. We use the shift-stack method to create deep stack images to recover the object. These composite images reveal that 3I/ATLAS has an average TESS magnitude of $T_\textrm{mag} = 19.6 \pm 0.1$ and an absolute visual magnitude of $H_V = 12.5 \pm 0.3$, consistent with magnitudes reported in July 2025, suggesting that 3I/ATLAS may have been active out at $\sim 6.4$ au. Additionally, we extract a $\sim 20$ day light curve and find no statistically significant evidence of a nucleus rotation period. Nevertheless, the data presented here are some of the earliest precovery images of 3I/ATLAS and may be used in conjunction with future observations to constrain the properties of our third interstellar interloper.
The Near-InfraRed Planet Searcher (NIRPS) is a high-resolution, high-stability near-infrared (NIR) spectrograph equipped with an AO system. Installed on the ESO 3.6-m telescope, it was developed to enable radial velocity (RV) measurements of low-mass exoplanets around M dwarfs and to characterise exoplanet atmospheres in the NIR. This paper provides a comprehensive design overview and characterisation of the NIRPS instrument, reporting on its on-sky performance, and presenting its GTO programme. The instrument started its operations on 1 Apr 2023 after intensive on-sky testing phases. The spectral range continuously covers the Y, J, and H bands from 972.4 to 1919.6 nm. The thermal control system maintains 1 mK stability over several months. The NIRPS AO-assisted fibre link improves coupling efficiency and offers a unique high-angular resolution capability with a fibre acceptance of only 0.4 arcsec. A high spectral resolving power of 90 000 and 75 000 is provided in HA and HE modes, respectively. The overall throughput from the top of the atmosphere to the detector peaks at 13 percent. The RV precision, measured on the bright star Proxima with a known exoplanetary system, is 77 cm/s. NIRPS and HARPS can be used simultaneously, offering unprecedented spectral coverage for spectroscopic characterisation and stellar activity mitigation. Modal noise can be aptly mitigated by the implementation of fibre stretchers and AO scanning mode. Initial results confirm that NIRPS opens new possibilities for RV measurements, stellar characterisation, and exoplanet atmosphere studies with high precision and high spectral fidelity. NIRPS demonstrated stable RV precision at the level of 1 m/s over several weeks. The instrument high throughput offers a notable improvement over previous spectrographs, enhancing our ability to detect small exoplanets.
We obtained 420 high-resolution spectra of Proxima, over 159 nights, using the Near Infra Red Planet Searcher (NIRPS). We derived 149 nightly binned radial velocity measurements with a standard deviation of 1.69 m/s and a median uncertainty of 55 cm/s, and performed a joint analysis combining radial velocities, spectroscopic activity indicators, and ground-based photometry, to model the planetary and stellar signals present in the data, applying multi-dimensional Gaussian process regression to model the activity signals. We detect the radial velocity signal of Proxima b in the NIRPS data. All planetary characteristics are consistent with those previously derived using visible light spectrographs. In addition, we find evidence of the presence of the sub-Earth Proxima d in the NIRPS data. When combining the data with the HARPS observations taken simultaneous to NIRPS, we obtain a tentative detection of Proxima d and parameters consistent with those measured with ESPRESSO. By combining the NIRPS data with simultaneously obtained HARPS observations and archival data, we confirm the existence of Proxima d, and demonstrate that its parameters are stable over time and against change of instrument. We refine the planetary parameters of Proxima b and d, and find inconclusive evidence of the signal attributed to Proxima c (P = 1900 d) being present in the data. We measure Proxima b and d to have minimum masses of 1.055 $\pm$ 0.055 Me, and 0.260 $\pm$ 0.038 Me, respectively. Our results show that, in the case of Proxima, NIRPS provides more precise radial velocity data than HARPS, and a more significant detection of the planetary signals. The standard deviation of the residuals of NIRPS after the fit is 80 cm/s, showcasing the potential of NIRPS to measure precise radial velocities in the near-infrared.
Comet C/2020 F3 (NEOWISE) was the brightest comet in the northern hemisphere since C/1995 O1 (Hale-Bopp), providing a unique opportunity to study its composition and spatial distribution of emissions. We conducted narrow-band photometry and long-slit low-resolution spectroscopy to monitor the comet's activity and compositional evolution over several weeks post-perihelion. Narrow-band images (OH, NH, CN, C$_2$, C$_3$, BC, GC, RC) and broad-band images (B, V, Rc, Ic) were acquired with TRAPPIST-North between 22 July and 10 September 2020 to derive production rates, mixing ratios, and dust proxy (Af$\rho$). A long-slit spectrum obtained on 24 July 2020 with HFOSC on the 2-m HCT was used to analyse emission profiles along the sunward and anti-sunward directions. We report production rates and mixing ratios of OH, NH, CN, C$_2$, C$_3$, and NH$_2$, and derive the water production rate using forbidden oxygen line flux. Ionic emissions from N$_2^+$, CO$^+$, CO$_2^+$, and H$_2$O$^+$ were detected at 4$\times$10$^4$ to 1$\times$10$^5$ km from the nucleus in the tailward direction. The average N$_2^+$/CO$^+$ ratio was found to be (3.0 $\pm$ 1.0)$\times$10$^{-2}$, refined to (4.8 $\pm$ 2.4)$\times$10$^{-2}$ using fluorescence modeling. The CO$_2^+$/CO$^+$ ratio was measured to be 1.34 $\pm$ 0.21. These results suggest the comet likely formed in the cold mid-to-outer solar nebula (approx. 50-70 K). Additionally, the average rotation period was estimated as 7.28 $\pm$ 0.79 hours, with a CN outflow velocity of 2.40 $\pm$ 0.25 km/s
We determine optimal requirements for the joint detection of habitable-zone planets and cold giant planets with the Habitable Worlds Observatory (HWO). Analysis of 164 nearby stars shows that a coronagraph outer working angle (OWA) of 1440 milliarcseconds (mas) is necessary to achieve 80-90% visibility of cold giants. Approximately 40 precursor radial velocity measurements with 1 m/s precision are required to adequately constrain orbital parameters before HWO observations. We demonstrate that 6-8 astrometric measurements distributed across the mission timeline, compared to radial velocity constraints alone and to astrometry constraints alone, significantly improve orbital parameter precision, enabling direct determination of orbital inclination with uncertainties of 0.8-3 degrees. For habitable-zone planet characterization, 4-5 epochs provide moderate confidence, while high-confidence (95%) confirmation requires 8+ observations. These specifications are essential for the comprehensive characterization of planetary system architectures and understanding the potential habitability of terrestrial exoplanets.