Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Bulk tissue RNA sequencing of heterogeneous samples provides averaged gene expression profiles, obscuring cell type-specific dynamics. To address this, we present a probabilistic hierarchical Bayesian model that deconvolves bulk RNA-seq data into constituent cell-type expression profiles and proportions, leveraging a high-resolution single-cell reference. We apply our model to human endometrial tissue across the menstrual cycle, a context characterized by dramatic hormone-driven cellular composition changes. Our extended framework provides a principled inference of cell type proportions and cell-specific gene expression changes across cycle phases. We demonstrate the model's structure, priors, and inference strategy in detail, and we validate its performance with simulations and comparisons to existing methods. The results reveal dynamic shifts in epithelial, stromal, and immune cell fractions between menstrual phases, and identify cell-type-specific differential gene expression associated with endometrial function (e.g., decidualization markers in stromal cells during the secretory phase). We further conduct robustness tests and show that our Bayesian approach is resilient to reference mismatches and noise. Finally, we discuss the biological significance of our findings, potential clinical implications for fertility and endometrial disorders, and future directions, including integration of spatial transcriptomics.
Single-cell RNA-seq foundation models achieve strong performance on downstream tasks but remain black boxes, limiting their utility for biological discovery. Recent work has shown that sparse dictionary learning can extract concepts from deep learning models, with promising applications in biomedical imaging and protein models. However, interpreting biological concepts remains challenging, as biological sequences are not inherently human-interpretable. We introduce a novel concept-based interpretability framework for single-cell RNA-seq models with a focus on concept interpretation and evaluation. We propose an attribution method with counterfactual perturbations that identifies genes that influence concept activation, moving beyond correlational approaches like differential expression analysis. We then provide two complementary interpretation approaches: an expert-driven analysis facilitated by an interactive interface and an ontology-driven method with attribution-based biological pathway enrichment. Applying our framework to two well-known single-cell RNA-seq models from the literature, we interpret concepts extracted by Top-K Sparse Auto-Encoders trained on two immune cell datasets. With a domain expert in immunology, we show that concepts improve interpretability compared to individual neurons while preserving the richness and informativeness of the latent representations. This work provides a principled framework for interpreting what biological knowledge foundation models have encoded, paving the way for their use for hypothesis generation and discovery.
Advances in single-cell sequencing have enabled high-resolution profiling of diverse molecular modalities, while integrating unpaired multi-omics single-cell data remains challenging. Existing approaches either rely on pair information or prior correspondences, or require computing a global pairwise coupling matrix, limiting their scalability and flexibility. In this paper, we introduce a scalable and flexible generative framework called single-cell Multi-omics Regularized Disentangled Representations (scMRDR) for unpaired multi-omics integration. Specifically, we disentangle each cell's latent representations into modality-shared and modality-specific components using a well-designed $\beta$-VAE architecture, which are augmented with isometric regularization to preserve intra-omics biological heterogeneity, adversarial objective to encourage cross-modal alignment, and masked reconstruction loss strategy to address the issue of missing features across modalities. Our method achieves excellent performance on benchmark datasets in terms of batch correction, modality alignment, and biological signal preservation. Crucially, it scales effectively to large-level datasets and supports integration of more than two omics, offering a powerful and flexible solution for large-scale multi-omics data integration and downstream biological discovery.
Analysis of genomics data is central to nearly all areas of modern biology. Despite significant progress in artificial intelligence (AI) and computational methods, these technologies require significant human oversight to generate novel and reliable biological insights. Consequently, the genomics community has developed a substantial number of diverse visualization approaches and a proliferation of tools that biologists rely on in their data analysis workflows. While there are a few commonly used visualization tools for genomics data, many tools target specific use cases for genomics data interpretation and offer only a limited, predefined set of visualization types. Moreover, static visualizations often fail to support exploratory analysis. Developing interactive visualizations and tools typically requires significant time and technical expertise, even when supported by modern LLM-powered coding assistants, and the resulting visualizations can be difficult to share among collaborators. We developed Gosling Designer, an all-in-one platform for editing, exploring, and sharing visualizations of genomics data. Gosling Designer addresses four key challenges observed in existing genomics visualization tools: (1) limited versatility, (2) difficulty of visualization authoring, (3) complexity of data management, and (4) barriers to sharing and collaboration.
Background: Patients carrying MEF2C haploinsufficiency develop a recognizable neurodevelopmental syndrome featuring intellectual disability, treatment-resistant seizures, and autism spectrum behaviors. While MEF2C's critical roles in cardiac development and neuronal function are well-established, its specific transcriptional operations within microglia (the brain's resident immune cells) have remained surprisingly undefined. This knowledge gap is particularly notable given that MEF2C syndrome patients consistently present with neurological symptoms while cardiac abnormalities are rarely observed. Results: We used human iPSC-derived microglia with MEF2C knockout to perform integrated ChIP-seq and RNA-seq analyses. Our data demonstrate that MEF2C directly binds 1,258 genomic loci and regulates 755 differentially expressed genes (FDR < 0.05). Integration identified 69 high-confidence direct targets with statistically significant overlap (p = 8.87 x 10^-5). The most dramatic changes included ADAMDEC1, a microglia-enriched metalloprotease for extracellular matrix remodeling (log2FC = -4.76, adj. p = 3.30 x 10^-19), and CARD11, an NF-kappaB signaling component (log2FC = -5.16, adj. p = 5.95 x 10^-5). Pathway analysis revealed profound disruption of Fc-gamma receptor signaling (p = 3.11 x 10^-7), alongside widespread changes in immune response and synaptic organization pathways. Conclusion: These findings establish MEF2C as a master transcriptional regulator coordinating both immune effector functions and synaptic interaction programs in microglia. The observed changes, particularly in Fc receptor signaling critical for synaptic pruning, likely underlie the neurological manifestations of MEF2C syndrome. Keywords: MEF2C, microglia, ChIP-seq, RNA-seq, neurodevelopmental disorders
The identification of homologous gene families across multiple genomes is a central task in bacterial pangenomics traditionally requiring computationally demanding all-against-all comparisons. PanDelos addresses this challenge with an alignment-free and parameter-free approach based on k-mer profiles, combining high speed, ease of use, and competitive accuracy with state-of-the-art methods. However, the increasing availability of genomic data requires tools that can scale efficiently to larger datasets. To address this need, we present PanDelos-plus, a fully parallel, gene-centric redesign of PanDelos. The algorithm parallelizes the most computationally intensive phases (Best Hit detection and Bidirectional Best Hit extraction) through data decomposition and a thread pool strategy, while employing lightweight data structures to reduce memory usage. Benchmarks on synthetic datasets show that PanDelos-plus achieves up to 14x faster execution and reduces memory usage by up to 96%, while maintaining accuracy. These improvements enable population-scale comparative genomics to be performed on standard multicore workstations, making large-scale bacterial pangenome analysis accessible for routine use in everyday research.
Arsenic (As), a widespread environmental toxin, poses major health risks due to its inorganic forms (iAs), which are linked to cancer, cardiovascular disease, and endocrine disruption. Although its toxic effects have been extensively studied, the molecular mechanisms underlying arsenic-induced perturbations remain incompletely understood. This complexity arises from its ability to reprogram epigenetic landscapes, alter gene expression, and disrupt metabolic balance through interconnected regulatory networks. Existing studies often analyze epigenomic, transcriptomic, and metabolomic datasets independently, overlooking their interdependence. Here, we present a coupled matrix factorization (CMF) framework based on the PARAFAC2-AOADMM model for joint integration of DNA methylation (RRBS), RNA-seq, and metabolomics data from mouse embryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) exposed to arsenic. By jointly decomposing multi-omics matrices, our approach identifies shared and dataset-specific components that capture coordinated molecular responses to arsenic exposure. This integrative methodology demonstrates the potential of CMF-based models in computational toxicology and offers a generalizable framework for dissecting complex multi-layered biological perturbations.
Motivation: Standard genome-wide association studies in cancer genomics rely on statistical significance with multiple testing correction, but systematically fail in underpowered cohorts. In TCGA breast cancer (n=967, 133 deaths), low event rates (13.8%) create severe power limitations, producing false negatives for known drivers and false positives for large passenger genes. Results: We developed a five-criteria computational framework integrating causal inference (inverse probability weighting, doubly robust estimation) with orthogonal biological validation (expression, mutation patterns, literature evidence). Applied to TCGA-BRCA mortality analysis, standard Cox+FDR detected zero genes at FDR<0.05, confirming complete failure in underpowered settings. Our framework correctly identified RYR2 -- a cardiac gene with no cancer function -- as a false positive despite nominal significance (p=0.024), while identifying KMT2C as a complex candidate requiring validation despite marginal significance (p=0.047, q=0.954). Power analysis revealed median power of 15.1% across genes, with KMT2C achieving only 29.8% power (HR=1.55), explaining borderline statistical significance despite strong biological evidence. The framework distinguished true signals from artifacts through mutation pattern analysis: RYR2 showed 29.8% silent mutations (passenger signature) with no hotspots, while KMT2C showed 6.7% silent mutations with 31.4% truncating variants (driver signature). This multi-evidence approach provides a template for analyzing underpowered cohorts, prioritizing biological interpretability over purely statistical significance. Availability: All code and analysis pipelines available at github.com/akarlaraytu/causal-inference-for-cancer-genomics
Cancer exhibits diverse and complex phenotypes driven by multifaceted molecular interactions. Recent biomedical research has emphasized the comprehensive study of such diseases by integrating multi-omics datasets (genome, proteome, transcriptome, epigenome). This approach provides an efficient method for identifying genetic variants associated with cancer and offers a deeper understanding of how the disease develops and spreads. However, it is challenging to comprehend complex interactions among the features of multi-omics datasets compared to single omics. In this paper, we analyze lung cancer multi-omics datasets from The Cancer Genome Atlas (TCGA). Using four statistical methods, LIMMA, the T test, Canonical Correlation Analysis (CCA), and the Wilcoxon test, we identified differentially expressed genes across gene expression, DNA methylation, and miRNA expression data. We then integrated these multi-omics data using the Kernel Machine Regression (KMR) approach. Our findings reveal significant interactions among the three omics: gene expression, miRNA expression, and DNA methylation in lung cancer. From our data analysis, we identified 38 genes significantly associated with lung cancer. From our data analysis, we identified 38 genes significantly associated with lung cancer. Among these, eight genes of highest ranking (PDGFRB, PDGFRA, SNAI1, ID1, FGF11, TNXB, ITGB1, ZIC1) were highlighted by rigorous statistical analysis. Furthermore, in silico studies identified three top-ranked potential candidate drugs (Selinexor, Orapred, and Capmatinib) that could play a crucial role in the treatment of lung cancer. These proposed drugs are also supported by the findings of other independent studies, which underscore their potential efficacy in the fight against lung cancer.
Nanopore sequencing enables real-time long-read DNA sequencing with reads exceeding 10 kilobases, but inherent error rates of 12-15 percent present significant computational challenges for read alignment. The critical seed chaining step must connect exact k-mer matches between reads and reference genomes while filtering spurious matches, yet state-of-the-art methods rely on fixed gap penalty functions unable to adapt to varying genomic contexts including tandem repeats and structural variants. This paper presents RawHash3, a hybrid framework combining graph neural networks with classical dynamic programming for adaptive seed chaining that maintains real-time performance while providing statistical guarantees. We formalize seed chaining as graph learning where seeds constitute nodes with 12-dimensional feature vectors and edges encode 8-dimensional spatial relationships including gap consistency. Our architecture employs three-layer EdgeConv GNN with confidence-based method selection that dynamically switches between learned guidance and algorithmic fallback. Comprehensive evaluation on 1,000 synthetic nanopore reads with 5,200 test seeds demonstrates RawHash3 achieves 99.94 percent precision and 40.07 percent recall, representing statistically significant 25.0 percent relative improvement over baseline with p less than 0.001. The system maintains median inference latency of 1.59ms meeting real-time constraints, while demonstrating superior robustness with 100 percent success rate under 20 percent label corruption versus baseline degradation to 30.3 percent. Cross-validation confirms stability establishing graph neural networks as viable approach for production genomics pipelines.
Single-cell RNA sequencing (scRNA-seq) data simulation is limited by classical methods that rely on linear correlations, failing to capture the intrinsic, nonlinear dependencies and the simultaneous gene-gene and cell-cell interactions. We introduce qSimCells, a novel hybrid quantum-classical simulator that leverages quantum entanglement to model single-cell transcriptomes. The core innovation is a quantum kernel that uses a parameterized quantum circuit with CNOT gates to encode complex, nonlinear gene regulatory network (GRN) and cell-cell communication topologies with explicit directionality (causality). The synthetic data exhibits non-classical dependencies that challenge standard analysis. We demonstrated that classical correlation methods (Pearson and Spearman) failed to reconstruct the complete programmed quantum causal paths, instead reporting spurious statistical artifacts driven by high base-gene expression probabilities. Applying CellChat2.0 to the simulated cell-cell communication validated the true mechanistic links by showing a robust, relative increase in communication probability (up to 75-fold) only when the quantum entanglement was active. This work confirms that the quantum kernel is essential for creating high-fidelity ground truth data, highlighting the need for advanced inference techniques to capture the complex, non-classical dependencies inherent in gene regulation.
Large Language Models are increasingly popular in genomics due to their potential to decode complex biological sequences. Hence, researchers require a standardized benchmark to evaluate DNA Language Models (DNA LMs) capabilities. However, evaluating DNA LMs is a complex task that intersects genomic's domain-specific challenges and machine learning methodologies, where seemingly minor implementation details can significantly compromise benchmark validity. We demonstrate this through BEND (Benchmarking DNA Language Models), where hardware-dependent hyperparameters -- number of data loading workers and buffer sizes -- create spurious performance variations of up to 4% for identical models. The problem stems from inadequate data shuffling interacting with domain specific data characteristics. Experiments with three DNA language models (HyenaDNA, DNABERT-2, ResNet-LM) show these artifacts affect both absolute performance and relative model rankings. We propose a simple solution: pre-shuffling data before storage eliminates hardware dependencies while maintaining efficiency. This work highlights how standard ML practices can interact unexpectedly with domain-specific data characteristics, with broader implications for benchmark design in specialized domains.
Aging is a highly complex and heterogeneous process that progresses at different rates across individuals, making biological age (BA) a more accurate indicator of physiological decline than chronological age. While previous studies have built aging clocks using single-omics data, they often fail to capture the full molecular complexity of human aging. In this work, we leveraged the Human Phenotype Project, a large-scale cohort of 10,000 adults aged 40-70 years, with extensive longitudinal profiling that includes clinical, behavioral, environmental, and multi-omics datasets spanning transcriptomics, lipidomics, metabolomics, and the microbiome. By employing advanced machine learning frameworks capable of modeling nonlinear biological dynamics, we developed and rigorously validated a multi-omics aging clock that robustly predicts diverse health outcomes and future disease risk. Unsupervised clustering of the integrated molecular profiles from multi-omics uncovered distinct biological subtypes of aging, revealing striking heterogeneity in aging trajectories and pinpointing pathway-specific alterations associated with different aging patterns. These findings demonstrate the power of multi-omics integration to decode the molecular landscape of aging and lay the groundwork for personalized healthspan monitoring and precision strategies to prevent age-related diseases.
Genome-resolved metagenomics has contributed largely to discovering prokaryotic genomes. When applied to microscopic eukaryotes, challenges such as the high number of introns and repeat regions found in nuclear genomes have hampered the mining and discovery of novel protistan lineages. Organellar genomes are simpler, smaller, have higher abundance than their nuclear counterparts and contain valuable phylogenetic information, but are yet to be widely used to identify new protist lineages from metagenomes. Here we present "ChloroScan", a new bioinformatics pipeline to extract eukaryotic plastid genomes from metagenomes. It incorporates a deep learning contig classifier to identify putative plastid contigs and an automated binning module to recover bins with guidance from a curated marker gene database. Additionally, ChloroScan summarizes the results in different user-friendly formats, including annotated coding sequences and proteins for each bin. We show that ChloroScan recovers more high-quality plastid bins than MetaBAT2 for simulated metagenomes. The practical utility of ChloroScan is illustrated by recovering 16 medium to high-quality metagenome assembled genomes from four protist-size fractioned metagenomes, with several bins showing high taxonomic novelty.
Rare genetic disease diagnosis faces critical challenges: insufficient patient data, inaccessible full genome sequencing, and the immense number of possible causative genes. These limitations cause prolonged diagnostic journeys, inappropriate treatments, and critical delays, disproportionately affecting patients in resource-limited settings where diagnostic tools are scarce. We propose RareNet, a subgraph-based Graph Neural Network that requires only patient phenotypes to identify the most likely causal gene and retrieve focused patient subgraphs for targeted clinical investigation. RareNet can function as a standalone method or serve as a pre-processing or post-processing filter for other candidate gene prioritization methods, consistently enhancing their performance while potentially enabling explainable insights. Through comprehensive evaluation on two biomedical datasets, we demonstrate competitive and robust causal gene prediction and significant performance gains when integrated with other frameworks. By requiring only phenotypic data, which is readily available in any clinical setting, RareNet democratizes access to sophisticated genetic analysis, offering particular value for underserved populations lacking advanced genomic infrastructure.
Spatial variable genes (SVGs) reveal critical information about tissue architecture, cellular interactions, and disease microenvironments. As spatial transcriptomics (ST) technologies proliferate, accurately identifying SVGs across diverse platforms, tissue types, and disease contexts has become both a major opportunity and a significant computational challenge. Here, we present a comprehensive benchmarking study of 20 state-of-the-art SVG detection methods using human slides from STimage-1K4M, a large-scale resource of ST data comprising 662 slides from more than 18 tissue types. We evaluate each method across a range of biologically and technically meaningful criteria, including recovery of pathologist-annotated domain-specific markers, cross-slide reproducibility, scalability to high-resolution data, and robustness to technical variation. Our results reveal marked differences in performance depending on tissue type, spatial resolution, and study design. Beyond benchmarking, we construct the first cross-tissue atlas of SVGs, enabling comparative analysis of spatial gene programs across cancer and normal tissues. We observe similarities between pairs of tissues that reflect developmental and functional relationships, such as high overlap between thymus and lymph node, and uncover spatial gene programs associated with metastasis, immune infiltration, and tissue-of-origin identity in cancer. Together, our work defines a framework for evaluating and interpreting spatial gene expression and establishes a reference resource for the ST community.
Single nucleotide polymorphism (SNP) datasets are fundamental to genetic studies but pose significant privacy risks when shared. The correlation of SNPs with each other makes strong adversarial attacks such as masked-value reconstruction, kin, and membership inference attacks possible. Existing privacy-preserving approaches either apply differential privacy to statistical summaries of these datasets or offer complex methods that require post-processing and the usage of a publicly available dataset to suppress or selectively share SNPs. In this study, we introduce an innovative framework for generating synthetic SNP sequence datasets using samples derived from time-inhomogeneous hidden Markov models (TIHMMs). To preserve the privacy of the training data, we ensure that each SNP sequence contributes only a bounded influence during training, enabling strong differential privacy guarantees. Crucially, by operating on full SNP sequences and bounding their gradient contributions, our method directly addresses the privacy risks introduced by their inherent correlations. Through experiments conducted on the real-world 1000 Genomes dataset, we demonstrate the efficacy of our method using privacy budgets of $\varepsilon \in [1, 10]$ at $\delta=10^{-4}$. Notably, by allowing the transition models of the HMM to be dependent on the location in the sequence, we significantly enhance performance, enabling the synthetic datasets to closely replicate the statistical properties of non-private datasets. This framework facilitates the private sharing of genomic data while offering researchers exceptional flexibility and utility.
Identifying cancer driver genes (CDGs) is essential for understanding cancer mechanisms and developing targeted therapies. Graph neural networks (GNNs) have recently been employed to identify CDGs by capturing patterns in biological interaction networks. However, most GNN-based approaches rely on a single protein-protein interaction (PPI) network, ignoring complementary information from other biological networks. Some studies integrate multiple networks by aligning features with consistency constraints to learn unified gene representations for CDG identification. However, such representation-level fusion often assumes congruent gene relationships across networks, which may overlook network heterogeneity and introduce conflicting information. To address this, we propose Soft-Evidence Fusion Graph Neural Network (SEFGNN), a novel framework for CDG identification across multiple networks at the decision level. Instead of enforcing feature-level consistency, SEFGNN treats each biological network as an independent evidence source and performs uncertainty-aware fusion at the decision level using Dempster-Shafer Theory (DST). To alleviate the risk of overconfidence from DST, we further introduce a Soft Evidence Smoothing (SES) module that improves ranking stability while preserving discriminative performance. Experiments on three cancer datasets show that SEFGNN consistently outperforms state-of-the-art baselines and exhibits strong potential in discovering novel CDGs.