Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
This paper investigates whether large language models (LLMs) can improve cross-sectional momentum strategies by extracting predictive signals from firm-specific news. We combine daily U.S. equity returns for S&P 500 constituents with high-frequency news data and use prompt-engineered queries to ChatGPT that inform the model when a stock is about to enter a momentum portfolio. The LLM evaluates whether recent news supports a continuation of past returns, producing scores that condition both stock selection and portfolio weights. An LLM-enhanced momentum strategy outperforms a standard long-only momentum benchmark, delivering higher Sharpe and Sortino ratios both in-sample and in a truly out-of-sample period after the model's pre-training cut-off. These gains are robust to transaction costs, prompt design, and portfolio constraints, and are strongest for concentrated, high-conviction portfolios. The results suggest that LLMs can serve as effective real-time interpreters of financial news, adding incremental value to established factor-based investment strategies.
In response to growing demand for resilient and transparent financial instruments, we introduce a novel framework for replicating private equity (PE) performance using liquid, AI-enhanced strategies. Despite historically delivering robust returns, private equity's inherent illiquidity and lack of transparency raise significant concerns regarding investor trust and systemic stability, particularly in periods of heightened market volatility. Our method uses advanced graphical models to decode liquid PE proxies and incorporates asymmetric risk adjustments that emulate private equity's unique performance dynamics. The result is a liquid, scalable solution that aligns closely with traditional quarterly PE benchmarks like Cambridge Associates and Preqin. This approach enhances portfolio resilience and contributes to the ongoing discourse on safe asset innovation, supporting market stability and investor confidence.
Recent work has emphasized the diversification benefits of combining trend signals across multiple horizons, with the medium-term window-typically six months to one year-long viewed as the "sweet spot" of trend-following. This paper revisits this conventional view by reallocating exposure dynamically across horizons using a Bayesian optimization framework designed to learn the optimal weights assigned to each trend horizon at the asset level. The common practice of equal weighting implicitly assumes that all assets benefit equally from all horizons; we show that this assumption is both theoretically and empirically suboptimal. We first optimize the horizon-level weights at the asset level to maximize the informativeness of trend signals before applying Bayesian graphical models-with sparsity and turnover control-to allocate dynamically across assets. The key finding is that the medium-term band contributes little incremental performance or diversification once short- and long-term components are included. Removing the 125-day layer improves Sharpe ratios and drawdown efficiency while maintaining benchmark correlation. We then rationalize this outcome through a minimum-variance formulation, showing that the medium-term horizon largely overlaps with its neighboring horizons. The resulting "barbell" structure-combining short- and long-term trends-captures most of the performance while reducing model complexity. This result challenges the common belief that more horizons always improve diversification and suggests that some forms of time-scale diversification may conceal unnecessary redundancy in trend premia.
This paper presents an option pricing model that incorporates clustered jumps using a bivariate Hawkes process. The process captures both self- and cross-excitation of positive and negative jumps, enabling the model to generate return dynamics with asymmetric, time-varying skewness and to produce positive or negative implied volatility skews. This feature is especially relevant for assets such as cryptocurrencies, so-called ``meme'' stocks, G-7 currencies, and certain commodities, where implied volatility skews may change sign depending on prevailing sentiment. We introduce two additional parameters, namely the positive and negative jump premia, to model the market risk preferences for positive and negative jumps, inferred from options data. This enables the model to flexibly match observed skew dynamics. Using Bitcoin (BTC) options, we empirically demonstrate how inferred jump risk premia exhibit predictive power for both the cost of carry in BTC futures and the performance of delta-hedged option strategies.
We present a fast and robust calibration method for stochastic volatility models that admit Fourier-analytic transform-based pricing via characteristic functions. The design is structure-preserving: we keep the original pricing transform and (i) split the pricing formula into data-independent inte- grals and a market-dependent remainder; (ii) precompute those data-independent integrals with GPU acceleration; and (iii) approximate only the remaining, market-dependent pricing map with a small neural network. We instantiate the workflow on a rough volatility model with tempered-stable jumps tailored to power-type volatility derivatives and calibrate it to VIX options with a global-to-local search. We verify that a pure-jump rough volatility model adequately captures the VIX dynamics, consistent with prior empirical findings, and demonstrate that our calibration method achieves high accuracy and speed.
This paper introduces a semi-analytical method for pricing American options on assets (stocks, ETFs) that pay discrete and/or continuous dividends. The problem is notoriously complex because discrete dividends create abrupt price drops and affect the optimal exercise timing, making traditional continuous-dividend models unsuitable. Our approach utilizes the Generalized Integral Transform (GIT) method introduced by the author and his co-authors in a number of papers, which transforms the pricing problem from a complex partial differential equation with a free boundary into an integral Volterra equation of the second or first kind. In this paper we illustrate this approach by considering a popular GBM model that accounts for discrete cash and proportional dividends using Dirac delta functions. By reframing the problem as an integral equation, we can sequentially solve for the option price and the early exercise boundary, effectively handling the discontinuities caused by the dividends. Our methodology provides a powerful alternative to standard numerical techniques like binomial trees or finite difference methods, which can struggle with the jump conditions of discrete dividends by losing accuracy or performance. Several examples demonstrate that the GIT method is highly accurate and computationally efficient, bypassing the need for extensive computational grids or complex backward induction steps.
This paper introduces a novel multidimensional insurance-linked instrument: a contingent convertible bond (CoCoCat bond) whose conversion trigger is activated by predefined natural catastrophes across multiple geographical regions. We develop such a model explicitly accounting for the complex dependencies between regional catastrophe losses. Specifically, we explore scenarios ranging from complete independence to proportional loss dependencies, both with fixed and random loss amounts. Utilizing change-of-measure techniques, we derive risk-neutral pricing formulas tailored to these diverse dependence structures. By fitting our model to real-world natural catastrophe data from Property Claim Services, we demonstrate the significant impact of inter-regional dependencies on the CoCoCat bond's pricing, highlighting the importance of multidimensional risk assessment for this innovative financial instrument.
We derive a new semi-analytical pricing model for Bermudan swaptions based on swap rates distributions and correlations between them. The model does not require product specific calibration.
The SABR model is a cornerstone of interest rate volatility modeling, but its practical application relies heavily on the analytical approximation by Hagan et al., whose accuracy deteriorates for high volatility, long maturities, and out-of-the-money options, admitting arbitrage. While machine learning approaches have been proposed to overcome these limitations, they have often been limited by simplified SABR dynamics or a lack of systematic validation against the full spectrum of market conditions. We develop a novel SABR DNN, a specialized Artificial Deep Neural Network (DNN) architecture that learns the true SABR stochastic dynamics using an unprecedented large training dataset (more than 200 million points) of interest rate Cap/Floor volatility surfaces, including very long maturities (30Y) and extreme strikes consistently with market quotations. Our dataset is obtained via high-precision unbiased Monte Carlo simulation of a special scaled shifted-SABR stochastic dynamics, which allows dimensional reduction without any loss of generality. Our SABR DNN provides arbitrage-free calibration of real market volatility surfaces and Cap/Floor prices for any maturity and strike with negligible computational effort and without retraining across business dates. Our results fully address the gaps in the previous machine learning SABR literature in a systematic and self-consistent way, and can be extended to cover any interest rate European options in different rate tenors and currencies, thus establishing a comprehensive functional SABR framework that can be adopted for daily trading and risk management activities.
This paper explores the application of deep Q-learning to hedging at-the-money options on the S\&P~500 index. We develop an agent based on the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, trained to simulate hedging decisions without making explicit model assumptions on price dynamics. The agent was trained on historical intraday prices of S\&P~500 call options across years 2004--2024, using a single time series of six predictor variables: option price, underlying asset price, moneyness, time to maturity, realized volatility, and current hedge position. A walk-forward procedure was applied for training, which led to nearly 17~years of out-of-sample evaluation. The performance of the deep reinforcement learning (DRL) agent is benchmarked against the Black--Scholes delta-hedging strategy over the same period. We assess both approaches using metrics such as annualized return, volatility, information ratio, and Sharpe ratio. To test the models' adaptability, we performed simulations across varying market conditions and added constraints such as transaction costs and risk-awareness penalties. Our results show that the DRL agent can outperform traditional hedging methods, particularly in volatile or high-cost environments, highlighting its robustness and flexibility in practical trading contexts. While the agent consistently outperforms delta-hedging, its performance deteriorates when the risk-awareness parameter is higher. We also observed that the longer the time interval used for volatility estimation, the more stable the results.
Motivated by Heisenberg's observable-only stance, we replace latent "information" (filtrations, hidden diffusions, state variables) with observable transitions between price states. On a discrete price lattice with a Hilbert-space representation, shift operators and the spectral calculus of the price define observable frequency operators and a translation-invariant convolution generator. Combined with jump operators that encode transition intensities, this yields a completely positive, translation-covariant Lindblad semigroup. Under the risk-neutral condition the framework leads to a nonlocal pricing equation that is diagonal in Fourier space; in the small-mesh diffusive limit its generator converges to the classical Black-Scholes-Merton operator. We do not propose another parametric model. We propose a foundation for model construction that is observable, first-principles, and mathematically natural. Noncommutativity emerges from the observable shift algebra rather than being postulated. The jump-intensity ledger determines tail behavior and short-maturity smiles and implies testable links between extreme-event probabilities and implied-volatility wings. Future directions: (i) multi-asset systems on higher-dimensional lattices with vector shifts and block kernels; (ii) state- or flow-dependent kernels as "financial interactions" leading to nonlinear master equations while preserving linear risk-neutral pricing; (iii) empirical tests of the predicted scaling relations between jump intensities and market extremes.
Battery Energy Storage Systems (BESS) are a cornerstone of the energy transition, as their ability to shift electricity across time enables both grid stability and the integration of renewable generation. This paper investigates the profitability of different market bidding strategies for BESS in the Central European wholesale power market, focusing on the day-ahead auction and intraday trading at EPEX Spot. We employ the rolling intrinsic approach as a realistic trading strategy for continuous intraday markets, explicitly incorporating bid--ask spreads to account for liquidity constraints. Our analysis shows that multi-market bidding strategies consistently outperform single-market participation. Furthermore, we demonstrate that maximum cycle limits significantly affect profitability, indicating that more flexible strategies which relax daily cycling constraints while respecting annual limits can unlock additional value.
In this paper, we propose an alternative valuation approach for CAT bonds where a pricing formula is learned by deep neural networks. Once trained, these networks can be used to price CAT bonds as a function of inputs that reflect both the current market conditions and the specific features of the contract. This approach offers two main advantages. First, due to the expressive power of neural networks, the trained model enables fast and accurate evaluation of CAT bond prices. Second, because of its fast execution the trained neural network can be easily analyzed to study its sensitivities w.r.t. changes of the underlying market conditions offering valuable insights for risk management.
We leverage the capacity of large language models such as Generative Pre-trained Transformer (GPT) in constructing factor models for Chinese futures markets. We successfully obtain 40 factors to design single-factor and multi-factor portfolios through long-short and long-only strategies, conducting backtests during the in-sample and out-of-sample period. Comprehensive empirical analysis reveals that GPT-generated factors deliver remarkable Sharpe ratios and annualized returns while maintaining acceptable maximum drawdowns. Notably, the GPT-based factor models also achieve significant alphas over the IPCA benchmark. Moreover, these factors demonstrate significant performance across extensive robustness tests, particularly excelling after the cutoff date of GPT's training data.
This paper investigates theoretical and methodological foundations for stochastic optimal control (SOC) in discrete time. We start formulating the control problem in a general dynamic programming framework, introducing the mathematical structure needed for a detailed convergence analysis. The associate value function is estimated through a sequence of approximations combining nonparametric regression methods and Monte Carlo subsampling. The regression step is performed within reproducing kernel Hilbert spaces (RKHSs), exploiting the classical KRR algorithm, while Monte Carlo sampling methods are introduced to estimate the continuation value. To assess the accuracy of our value function estimator, we propose a natural error decomposition and rigorously control the resulting error terms at each time step. We then analyze how this error propagates backward in time-from maturity to the initial stage-a relatively underexplored aspect of the SOC literature. Finally, we illustrate how our analysis naturally applies to a key financial application: the pricing of American options.
We study an extension of the Cox-Ingersoll-Ross (CIR) process that incorporates jumps at deterministic dates, referred to as stochastic discontinuities. Our main motivation stems from short-rate modelling in the context of overnight rates, which often exhibit jumps at predetermined dates corresponding to central bank meetings. We provide a formal definition of a CIR process with stochastic discontinuities, where the jump sizes depend on the pre-jump state, thereby allowing for both upwarrd and downward movements as well as potential autocorrelation among jumps. Under mild assumptions, we establish existence of such a process and identify sufficient and necessary conditions under which the process inherits the affine property of its continuous counterpart. We illustrate our results with practical examples that generate both upward and downward jumps while preserving the affine property and non-negativity. In particular, we show that a stochastically discontinuous CIR process can be constructed by applying a determinisitic cadlag time-change of a classical CIR process. Finally, we further enrich the affine framework by characterizing conditions that ensure infinite divisibility of the extended CIR process.
This paper addresses the challenges of pricing exotic options and structured products, which traditional models often fail to handle due to their inability to capture real-world market phenomena like fat-tailed distributions and volatility clustering. We introduce a Diffusion-Conditional Probability Model (DDPM) to generate more realistic price paths. Our method incorporates a composite loss function with financial-specific features, and we propose a P-Q dynamic game framework for evaluating the model's economic value through adversarial backtesting. Static validation shows our P-model effectively matches market mean and volatility. In dynamic games, it demonstrates significantly higher profitability than a traditional Monte Carlo-based model for European and Asian options. However, the model shows limitations in pricing products highly sensitive to extreme events, such as snowballs and accumulators, because it tends to underestimate tail risks. The study concludes that diffusion models hold significant potential for enhancing pricing accuracy, though further research is needed to improve their ability to model extreme market risks.
The CAPM regression is typically interpreted as if the market return contemporaneously \emph{causes} individual returns, motivating beta-neutral portfolios and factor attribution. For realized equity returns, however, this interpretation is inconsistent: a same-period arrow $R_{m,t} \to R_{i,t}$ conflicts with the fact that $R_m$ is itself a value-weighted aggregate of its constituents, unless $R_m$ is lagged or leave-one-out -- the ``aggregator contradiction.'' We formalize CAPM as a structural causal model and analyze the admissible three-node graphs linking an external driver $Z$, the market $R_m$, and an asset $R_i$. The empirically plausible baseline is a \emph{fork}, $Z \to \{R_m, R_i\}$, not $R_m \to R_i$. In this setting, OLS beta reflects not a causal transmission, but an attenuated proxy for how well $R_m$ captures the underlying driver $Z$. Consequently, ``beta-neutral'' portfolios can remain exposed to macro or sectoral shocks, and hedging on $R_m$ can import index-specific noise. Using stylized models and large-cap U.S.\ equity data, we show that contemporaneous betas act like proxies rather than mechanisms; any genuine market-to-stock channel, if at all, appears only at a lag and with modest economic significance. The practical message is clear: CAPM should be read as associational. Risk management and attribution should shift from fixed factor menus to explicitly declared causal paths, with ``alpha'' reserved for what remains invariant once those causal paths are explicitly blocked.