Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Aerodynamic drag on flat-backed vehicles like vans and trucks is dominated by a low-pressure wake, whose control is critical for reducing fuel consumption. This paper presents an experimental study at $Re_W\approx 78,300$ on active flow control using four pulsed jets at the rear edges of a bluff body model. A hybrid genetic algorithm, combining a global search with a local gradient-based optimizer, was used to determine the optimal jet actuation parameters in an experiment-in-the-loop setup. The cost function was designed to achieve a net energy saving by simultaneously minimizing aerodynamic drag and penalizing the actuation's energy consumption. The optimization campaign successfully identified a control strategy that yields a drag reduction of approximately 10%. The optimal control law features a strong, low-frequency actuation from the bottom jet, which targets the main vortex shedding, while the top and lateral jets address higher-frequency, less energetic phenomena. Particle Image Velocimetry analysis reveals a significant upward shift and stabilization of the wake, leading to substantial pressure recovery on the model's lower base. Ultimately, this work demonstrates that a model-free optimization approach can successfully identify non-intuitive, multi-faceted actuation strategies that yield significant and energetically efficient drag reduction.
We are proposing fully parallel and maximally distributed hardware realization of a generic neuro-computing system. More specifically, the proposal relates to the wireless sensor networks technology to serve as a massively parallel and fully distributed hardware platform to implement and realize artificial neural network (ANN) algorithms. A parallel and distributed (PDP) hardware realization of ANNs makes it possible to have real time computation of large-scale (and complex) problems in a highly robust framework. We will demonstrate how a network of hundreds of thousands of processing nodes (or motes of a wireless sensor network), which have on-board processing and wireless communication features, can be used to implement fully parallel and massively distributed computation of artificial neural network algorithms for solution of truly large-scale problems in real time. The realization of artificial neural network algorithms in a massively parallel and fully distributed hardware has been the goal of neural network computing researchers. This is because a parallel and distributed computation of artificial neural network algorithms could not have been achieved against all the advancements in silicon- or optics-based computing. Accordingly, artificial neural networks could not be applied to very large-scale problems for real time computation of solutions. This hindered the development of neural algorithms for affordable and practical solutions of challenging problems since often special-purpose computing approaches in hardware, software or hybrid (non-neural) had to be developed for and fine-tuned to specific problems that are very large-scale and highly complex. Successful implementation is likely to revolutionize computing as we know it by making it possible to solve very large scale scientific, engineering or technical problems in real time.
Forest fires are among the most dangerous and unpredictable natural disasters worldwide. Forest fire can be instigated by natural causes or by humans. They are devastating overall, and thus, many research efforts have been carried out to predict whether a fire can occur in an area given certain environmental variables. Many research works employ Machine Learning (ML) and Deep Learning (DL) models for classification; however, their accuracy is merely adequate and falls short of expectations. This limit arises because these models are unable to depict the underlying nonlinearity in nature and extensively rely on substantial training data, which is hard to obtain. We propose using Neurochaos Learning (NL), a chaos-based, brain-inspired learning algorithm for forest fire classification. Like our brains, NL needs less data to learn nonlinear patterns in the training data. It employs one-dimensional chaotic maps, namely the Generalized L\"uroth Series (GLS), as neurons. NL yields comparable performance with ML and DL models, sometimes even surpassing them, particularly in low-sample training regimes, and unlike deep neural networks, NL is interpretable as it preserves causal structures in the data. Random Heterogenous Neurochaos Learning (RHNL), a type of NL where different chaotic neurons are randomnly located to mimic the randomness and heterogeneity of human brain gives the best F1 score of 1.0 for the Algerian Forest Fires Dataset. Compared to other traditional ML classifiers considered, RHNL also gives high precision score of 0.90 for Canadian Forest Fires Dataset and 0.68 for Portugal Forest Fires Dataset. The results obtained from this work indicate that Neurochaos Learning (NL) architectures achieve better performance than conventional machine learning classifiers, highlighting their promise for developing more efficient and reliable forest fire detection systems.
Recent work has shown that different large language models (LLMs) converge to similar and accurate input embedding representations for numbers. These findings conflict with the documented propensity of LLMs to produce erroneous outputs when dealing with numeric information. In this work, we aim to explain this conflict by exploring how language models manipulate numbers and quantify the lower bounds of accuracy of these mechanisms. We find that despite surfacing errors, different language models learn interchangeable representations of numbers that are systematic, highly accurate and universal across their hidden states and the types of input contexts. This allows us to create universal probes for each LLM and to trace information -- including the causes of output errors -- to specific layers. Our results lay a fundamental understanding of how pre-trained LLMs manipulate numbers and outline the potential of more accurate probing techniques in addressed refinements of LLMs' architectures.
Robotic systems operating at the edge require efficient online learning algorithms that can continuously adapt to changing environments while processing streaming sensory data. Traditional backpropagation, while effective, conflicts with biological plausibility principles and may be suboptimal for continuous adaptation scenarios. The Predictive Coding (PC) framework offers a biologically plausible alternative with local, Hebbian-like update rules, making it suitable for neuromorphic hardware implementation. However, PC's main limitation is its computational overhead due to multiple inference iterations during training. We present Predictive Coding Network with Temporal Amortization (PCN-TA), which preserves latent states across temporal frames. By leveraging temporal correlations, PCN-TA significantly reduces computational demands while maintaining learning performance. Our experiments on the COIL-20 robotic perception dataset demonstrate that PCN-TA achieves 10% fewer weight updates compared to backpropagation and requires 50% fewer inference steps than baseline PC networks. These efficiency gains directly translate to reduced computational overhead for moving another step toward edge deployment and real-time adaptation support in resource-constrained robotic systems. The biologically-inspired nature of our approach also makes it a promising candidate for future neuromorphic hardware implementations, enabling efficient online learning at the edge.
In control problems and basic scientific modeling, it is important to compare observations with dynamical simulations. For example, comparing two neural systems can shed light on the nature of emergent computations in the brain and deep neural networks. Recently, Ostrow et al. (2023) introduced Dynamical Similarity Analysis (DSA), a method to measure the similarity of two systems based on their recurrent dynamics rather than geometry or topology. However, DSA does not consider how inputs affect the dynamics, meaning that two similar systems, if driven differently, may be classified as different. Because real-world dynamical systems are rarely autonomous, it is important to account for the effects of input drive. To this end, we introduce a novel metric for comparing both intrinsic (recurrent) and input-driven dynamics, called InputDSA (iDSA). InputDSA extends the DSA framework by estimating and comparing both input and intrinsic dynamic operators using a variant of Dynamic Mode Decomposition with control (DMDc) based on subspace identification. We demonstrate that InputDSA can successfully compare partially observed, input-driven systems from noisy data. We show that when the true inputs are unknown, surrogate inputs can be substituted without a major deterioration in similarity estimates. We apply InputDSA on Recurrent Neural Networks (RNNs) trained with Deep Reinforcement Learning, identifying that high-performing networks are dynamically similar to one another, while low-performing networks are more diverse. Lastly, we apply InputDSA to neural data recorded from rats performing a cognitive task, demonstrating that it identifies a transition from input-driven evidence accumulation to intrinsically-driven decision-making. Our work demonstrates that InputDSA is a robust and efficient method for comparing intrinsic dynamics and the effect of external input on dynamical systems.
We introduce Humans-Junior, a 3.8B model that matches GPT-4o on the FACTS Grounding public subset within a $\pm 5$ pp equivalence margin. Results. On Q1--Q500 under identical judges, GPT-4o scores 73.5% (95% CI 69.5--77.2) and Humans-Junior 72.7% (95% CI 68.7--76.5); the paired difference is 0.8 pp (bootstrap 95% CI $-3.1$ to $+4.7$; permutation $p = 0.72$; Cohen's $d = 0.023$). TOST establishes equivalence at $\pm 5$ pp (not at $\pm 3$ pp). When purchased as managed APIs, Humans-Junior's base model (Phi-3.5-mini-instruct) is $\approx 19\times$ less expensive than GPT-4o on Microsoft AI Foundry pricing; self-hosted or edge deployments can drive incremental inference cost toward zero. Measured vs estimated pricing sources are tabulated in Appendix E. Method. Our approach combines minimal directed "Exoskeleton Reasoning" scaffolds with behavioral fine-tuning that teaches protocol compliance (epistemic discipline) rather than domain answers. Fine-tuning alone adds little; combined, they synergize (+17.7 pp, $p < 0.001$) and reduce variance ($\approx 25\%$). In prompt-only settings on frontier models (Q1--Q100; non-comparable), directed reasoning improved GPT-4o by +11.8 pp to 85.3% and Gemini-2.5-Pro by +5.0 pp to 93.3% (baseline 88.3%, $n = 100$); see Section~5. TL;DR. A 3.8B model achieves GPT-4o-level FACTS accuracy (equivalent within $\pm 5$ pp on Q1--Q500). Cloud pricing shows $\approx 19\times$ lower cost versus GPT-4o, and self-hosted/edge deployments can approach zero marginal cost. Pricing sources are listed in Appendix E. Frontier prompt-only gains (Q1--Q100; non-comparable) and optimized-prompt exploratory results under earlier judges are summarized in Appendix F. Keywords: Small Language Models, Factual Grounding, Directed Reasoning, Fine-Tuning, Model Alignment, Cost-Efficient AI
Physics-Informed Machine Learning (PIML) has successfully integrated mechanistic understanding into machine learning, particularly in domains governed by well-known physical laws. This success has motivated efforts to apply PIML to biology, a field rich in dynamical systems but shaped by different constraints. Biological modeling, however, presents unique challenges: multi-faceted and uncertain prior knowledge, heterogeneous and noisy data, partial observability, and complex, high-dimensional networks. In this position paper, we argue that these challenges should not be seen as obstacles to PIML, but as catalysts for its evolution. We propose Biology-Informed Machine Learning (BIML): a principled extension of PIML that retains its structural grounding while adapting to the practical realities of biology. Rather than replacing PIML, BIML retools its methods to operate under softer, probabilistic forms of prior knowledge. We outline four foundational pillars as a roadmap for this transition: uncertainty quantification, contextualization, constrained latent structure inference, and scalability. Foundation Models and Large Language Models will be key enablers, bridging human expertise with computational modeling. We conclude with concrete recommendations to build the BIML ecosystem and channel PIML-inspired innovation toward challenges of high scientific and societal relevance.
Synthetic Benchmark Problems (SBPs) are commonly used to evaluate the performance of metaheuristic algorithms. However, these SBPs often contain various unrealistic properties, potentially leading to underestimation or overestimation of algorithmic performance. While several benchmark suites comprising real-world problems have been proposed for various types of metaheuristics, a notable gap exists for Constrained Multi-objective Optimization Problems (CMOPs) derived from practical engineering applications, particularly in the domain of Battery Thermal Management System (BTMS) design. To address this gap, this study develops and presents a specialized benchmark suite for multi-objective optimization in BTMS. This suite comprises a diverse collection of real-world constrained problems, each defined via accurate surrogate models based on recent research to efficiently represent complex thermal-fluid interactions. The primary goal of this benchmark suite is to provide a practical and relevant testing ground for evolutionary algorithms and optimization methods focused on energy storage thermal management. Future work will involve establishing comprehensive baseline results using state-of-the-art algorithms, conducting comparative analyses, and developing a standardized ranking scheme to facilitate robust performance assessment.
This paper introduces the Trust-Based Optimization (TBO), a novel extension of the island model in evolutionary computation that replaces conventional periodic migrations with a flexible, agent-driven interaction mechanism based on trust or reputation. Experimental results demonstrate that TBO generally outperforms the standard island model evolutionary algorithm across various optimization problems. Nevertheless, algorithm performance varies depending on the problem type, with certain configurations being more effective for specific landscapes or dimensions. The findings suggest that trust and reputation mechanisms provide a flexible and adaptive approach to evolutionary optimization, improving solution quality in many cases.
Within the current sphere of deep learning research, despite the extensive application of optimization algorithms such as Stochastic Gradient Descent (SGD) and Adaptive Moment Estimation (Adam), there remains a pronounced inadequacy in their capability to address fluctuations in learning efficiency, meet the demands of complex models, and tackle non-convex optimization issues. These challenges primarily arise from the algorithms' limitations in handling complex data structures and models, for instance, difficulties in selecting an appropriate learning rate, avoiding local optima, and navigating through high-dimensional spaces. To address these issues, this paper introduces a novel optimization algorithm named DWMGrad. This algorithm, building on the foundations of traditional methods, incorporates a dynamic guidance mechanism reliant on historical data to dynamically update momentum and learning rates. This allows the optimizer to flexibly adjust its reliance on historical information, adapting to various training scenarios. This strategy not only enables the optimizer to better adapt to changing environments and task complexities but also, as validated through extensive experimentation, demonstrates DWMGrad's ability to achieve faster convergence rates and higher accuracies under a multitude of scenarios.
In this paper, we demonstrate how the physics of entropy production, when combined with symmetry constraints, can be used for implementing high-performance and energy-efficient analog computing systems. At the core of the proposed framework is a generalized maximum-entropy principle that can describe the evolution of a mesoscopic physical system formed by an interconnected ensemble of analog elements, including devices that can be readily fabricated on standard integrated circuit technology. We show that the maximum-entropy state of this ensemble corresponds to a margin-propagation (MP) distribution and can be used for computing correlations and inner products as the ensemble's macroscopic properties. Furthermore, the limits of computational throughput and energy efficiency can be pushed by extending the framework to non-equilibrium or transient operating conditions, which we demonstrate using a proof-of-concept radio-frequency (RF) correlator integrated circuit fabricated in a 22 nm SOI CMOS process. The measured results show a compute efficiency greater than 2 Peta ($10^{15}$) Bit Operations per second per Watt (PetaOPS/W) at 8-bit precision and greater than 0.8 Exa ($10^{18}$) Bit Operations per second per Watt (ExaOPS/W) at 3-bit precision for RF data sampled at rates greater than 4 GS/s. Using the fabricated prototypes, we also showcase several real-world RF applications at the edge, including spectrum sensing, and code-domain communications.
The energy paradigm, exemplified by Hopfield networks, offers a principled framework for memory in neural systems by interpreting dynamics as descent on an energy surface. While powerful for static associative memories, it falls short in modeling sequential memory, where transitions between memories are essential. We introduce the Exponential Dynamic Energy Network (EDEN), a novel architecture that extends the energy paradigm to temporal domains by evolving the energy function over multiple timescales. EDEN combines a static high-capacity energy network with a slow, asymmetrically interacting modulatory population, enabling robust and controlled memory transitions. We formally derive short-timescale energy functions that govern local dynamics and use them to analytically compute memory escape times, revealing a phase transition between static and dynamic regimes. The analysis of capacity, defined as the number of memories that can be stored with minimal error rate as a function of the dimensions of the state space (number of feature neurons), for EDEN shows that it achieves exponential sequence memory capacity $O(\gamma^N)$, outperforming the linear capacity $O(N)$ of conventional models. Furthermore, EDEN's dynamics resemble the activity of time and ramping cells observed in the human brain during episodic memory tasks, grounding its biological relevance. By unifying static and sequential memory within a dynamic energy framework, EDEN offers a scalable and interpretable model for high-capacity temporal memory in both artificial and biological systems.
While modern machine learning has transformed numerous application domains, its growing computational demands increasingly constrain scalability and efficiency, particularly on embedded and resource-limited platforms. In practice, neural networks must not only operate efficiently but also provide reliable predictions under distributional shifts or unseen data. Bayesian neural networks offer a principled framework for quantifying uncertainty, yet their computational overhead further compounds these challenges. This work advances resource-efficient and robust inference for both conventional and Bayesian neural networks through the joint pursuit of algorithmic and hardware efficiency. The former reduces computation through model compression and approximate Bayesian inference, while the latter optimizes deployment on digital accelerators and explores analog hardware, bridging algorithmic design and physical realization. The first contribution, Galen, performs automatic layer-specific compression guided by sensitivity analysis and hardware-in-the-loop feedback. Analog accelerators offer efficiency gains at the cost of noise; this work models device imperfections and extends noisy training to nonstationary conditions, improving robustness and stability. A second line of work advances probabilistic inference, developing analytic and ensemble approximations that replace costly sampling, integrate into a compiler stack, and optimize embedded inference. Finally, probabilistic photonic computing introduces a paradigm where controlled analog noise acts as an intrinsic entropy source, enabling fast, energy-efficient probabilistic inference directly in hardware. Together, these studies demonstrate how efficiency and reliability can be advanced jointly through algorithm-hardware co-design, laying the foundation for the next generation of trustworthy, energy-efficient machine-learning systems.
The deployment of AI on edge computing devices faces significant challenges related to energy consumption and functionality. These devices could greatly benefit from brain-inspired learning mechanisms, allowing for real-time adaptation while using low-power. In-memory computing with nanoscale resistive memories may play a crucial role in enabling the execution of AI workloads on these edge devices. In this study, we introduce voltage-dependent synaptic plasticity (VDSP) as an efficient approach for unsupervised and local learning in memristive synapses based on Hebbian principles. This method enables online learning without requiring complex pulse-shaping circuits typically necessary for spike-timing-dependent plasticity (STDP). We show how VDSP can be advantageously adapted to three types of memristive devices (TiO$_2$, HfO$_2$-based metal-oxide filamentary synapses, and HfZrO$_4$-based ferroelectric tunnel junctions (FTJ)) with disctinctive switching characteristics. System-level simulations of spiking neural networks incorporating these devices were conducted to validate unsupervised learning on MNIST-based pattern recognition tasks, achieving state-of-the-art performance. The results demonstrated over 83% accuracy across all devices using 200 neurons. Additionally, we assessed the impact of device variability, such as switching thresholds and ratios between high and low resistance state levels, and proposed mitigation strategies to enhance robustness.
Spiking Neural Networks (SNNs) are one of the most promising bio-inspired neural networks models and have drawn increasing attention in recent years. The event-driven communication mechanism of SNNs allows for sparse and theoretically low-power operations on dedicated neuromorphic hardware. However, the binary nature of instantaneous spikes also leads to considerable information loss in SNNs, resulting in accuracy degradation. To address this issue, we propose a multi-level spiking neuron model able to provide both low-quantization error and minimal inference latency while approaching the performance of full precision Artificial Neural Networks (ANNs). Experimental results with popular network architectures and datasets, show that multi-level spiking neurons provide better information compression, allowing therefore a reduction in latency without performance loss. When compared to binary SNNs on image classification scenarios, multi-level SNNs indeed allow reducing by 2 to 3 times the energy consumption depending on the number of quantization intervals. On neuromorphic data, our approach allows us to drastically reduce the inference latency to 1 timestep, which corresponds to a compression factor of 10 compared to previously published results. At the architectural level, we propose a new residual architecture that we call Sparse-ResNet. Through a careful analysis of the spikes propagation in residual connections we highlight a spike avalanche effect, that affects most spiking residual architectures. Using our Sparse-ResNet architecture, we can provide state-of-the-art accuracy results in image classification while reducing by more than 20% the network activity compared to the previous spiking ResNets.
Kolmogorov-Arnold Networks (KANs) have recently emerged as a promising alternative to traditional Multilayer Perceptrons (MLPs), inspired by the Kolmogorov-Arnold representation theorem. Unlike MLPs, which use fixed activation functions on nodes, KANs employ learnable univariate basis functions on edges, offering enhanced expressivity and interpretability. This review provides a systematic and comprehensive overview of the rapidly expanding KAN landscape, moving beyond simple performance comparisons to offer a structured synthesis of theoretical foundations, architectural variants, and practical implementation strategies. By collecting and categorizing a vast array of open-source implementations, we map the vibrant ecosystem supporting KAN development. We begin by bridging the conceptual gap between KANs and MLPs, establishing their formal equivalence and highlighting the superior parameter efficiency of the KAN formulation. A central theme of our review is the critical role of the basis function; we survey a wide array of choices, including B-splines, Chebyshev and Jacobi polynomials, ReLU compositions, Gaussian RBFs, and Fourier series, and analyze their respective trade-offs in terms of smoothness, locality, and computational cost. We then categorize recent advancements into a clear roadmap, covering techniques for improving accuracy, efficiency, and regularization. Key topics include physics-informed loss design, adaptive sampling, domain decomposition, hybrid architectures, and specialized methods for handling discontinuities. Finally, we provide a practical "Choose-Your-KAN" guide to help practitioners select appropriate architectures, and we conclude by identifying current research gaps. The associated GitHub repository https://github.com/AmirNoori68/kan-review complements this paper and serves as a structured reference for ongoing KAN research.
Our study contributes to the scheduling and combinatorial optimization literature with new heuristics discovered by leveraging the power of Large Language Models (LLMs). We focus on the single-machine total tardiness (SMTT) problem, which aims to minimize total tardiness by sequencing n jobs on a single processor without preemption, given processing times and due dates. We develop and benchmark two novel LLM-discovered heuristics, the EDD Challenger (EDDC) and MDD Challenger (MDDC), inspired by the well-known Earliest Due Date (EDD) and Modified Due Date (MDD) rules. In contrast to prior studies that employed simpler rule-based heuristics, we evaluate our LLM-discovered algorithms using rigorous criteria, including optimality gaps and solution time derived from a mixed-integer programming (MIP) formulation of SMTT. We compare their performance against state-of-the-art heuristics and exact methods across various job sizes (20, 100, 200, and 500 jobs). For instances with more than 100 jobs, exact methods such as MIP and dynamic programming become computationally intractable. Up to 500 jobs, EDDC improves upon the classic EDD rule and another widely used algorithm in the literature. MDDC consistently outperforms traditional heuristics and remains competitive with exact approaches, particularly on larger and more complex instances. This study shows that human-LLM collaboration can produce scalable, high-performing heuristics for NP-hard constrained combinatorial optimization, even under limited resources when effectively configured.