Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
The cost and complexity of financial crime compliance (FCC) continue to rise, often without measurable improvements in effectiveness. While AI offers potential, most solutions remain opaque and poorly aligned with regulatory expectations. This paper presents the design and deployment of an agentic AI system for FCC in digitally native financial platforms. Developed through an Action Design Research (ADR) process with a fintech firm and regulatory stakeholders, the system automates onboarding, monitoring, investigation, and reporting, emphasizing explainability, traceability, and compliance-by-design. Using artifact-centric modeling, it assigns clearly bounded roles to autonomous agents and enables task-specific model routing and audit logging. The contribution includes a reference architecture, a real-world prototype, and insights into how Agentic AI can reconfigure FCC workflows under regulatory constraints. Our findings extend IS literature on AI-enabled compliance by demonstrating how automation, when embedded within accountable governance structures, can support transparency and institutional trust in high-stakes, regulated environments.
Benchmarks are crucial for assessing multi-agent reinforcement learning (MARL) algorithms. While StarCraft II-related environments have driven significant advances in MARL, existing benchmarks like SMAC focus primarily on micromanagement, limiting comprehensive evaluation of high-level strategic intelligence. To address this, we introduce HLSMAC, a new cooperative MARL benchmark with 12 carefully designed StarCraft II scenarios based on classical stratagems from the Thirty-Six Stratagems. Each scenario corresponds to a specific stratagem and is designed to challenge agents with diverse strategic elements, including tactical maneuvering, timing coordination, and deception, thereby opening up avenues for evaluating high-level strategic decision-making capabilities. We also propose novel metrics across multiple dimensions beyond conventional win rate, such as ability utilization and advancement efficiency, to assess agents' overall performance within the HLSMAC environment. We integrate state-of-the-art MARL algorithms and LLM-based agents with our benchmark and conduct comprehensive experiments. The results demonstrate that HLSMAC serves as a robust testbed for advancing multi-agent strategic decision-making.
This article deals with the cake cutting problem. In this setting, there exists two notions of fair division: proportional division (when there are n players, each player thinks to get at least 1/n of the cake) and envy-free division (each player wants to keep his or her share because he or she does not envy the portion given to another player). Some results are valid for proportional division but not for envy-free division. Here, we introduce and study a scale between the proportional division and the envy-free division. The goal is to understand where is the gap between statements about proportional division and envy-free division. This scale comes from the notion introduced in this article: k-proportionality. When k = n this notion corresponds to the proportional division and when k = 2 it corresponds to envy-free division. With k-proportionality we can understand where some difficulties in fair division lie. First, we show that there are situations in which there is no k-proportional and equitable division of a pie with connected pieces when k $\le$ n -1. This result was known only for envy-free division, ie k = 2. Next, we prove that there are situations in which there is no Pareto-optimal k-proportional division of a cake with connected pieces when k $\le$ n -1. This result was known only for k = 2. These theorems say that we can get an impossibility result even if we do not consider an envy-free division but a weaker notion. Finally, k-proportionality allows to give a generalization with a uniform statement of theorems about strong envy-free and strong proportional divisions.
It is crucial to efficiently execute instructions such as "Find an apple and a banana" or "Get ready for a field trip," which require searching for multiple objects or understanding context-dependent commands. This study addresses the challenging problem of determining which robot should be assigned to which part of a task when each robot possesses different situational on-site knowledge-specifically, spatial concepts learned from the area designated to it by the user. We propose a task planning framework that leverages large language models (LLMs) and spatial concepts to decompose natural language instructions into subtasks and allocate them to multiple robots. We designed a novel few-shot prompting strategy that enables LLMs to infer required objects from ambiguous commands and decompose them into appropriate subtasks. In our experiments, the proposed method achieved 47/50 successful assignments, outperforming random (28/50) and commonsense-based assignment (26/50). Furthermore, we conducted qualitative evaluations using two actual mobile manipulators. The results demonstrated that our framework could handle instructions, including those involving ad hoc categories such as "Get ready for a field trip," by successfully performing task decomposition, assignment, sequential planning, and execution.
In volatile financial markets, balancing risk and return remains a significant challenge. Traditional approaches often focus solely on equity allocation, overlooking the strategic advantages of options trading for dynamic risk hedging. This work presents DeltaHedge, a multi-agent framework that integrates options trading with AI-driven portfolio management. By combining advanced reinforcement learning techniques with an ensembled options-based hedging strategy, DeltaHedge enhances risk-adjusted returns and stabilizes portfolio performance across varying market conditions. Experimental results demonstrate that DeltaHedge outperforms traditional strategies and standalone models, underscoring its potential to transform practical portfolio management in complex financial environments. Building on these findings, this paper contributes to the fields of quantitative finance and AI-driven portfolio optimization by introducing a novel multi-agent system for integrating options trading strategies, addressing a gap in the existing literature.
The rapid advancement of generative AI has democratized access to powerful tools such as Text-to-Image models. However, to generate high-quality images, users must still craft detailed prompts specifying scene, style, and context-often through multiple rounds of refinement. We propose PromptSculptor, a novel multi-agent framework that automates this iterative prompt optimization process. Our system decomposes the task into four specialized agents that work collaboratively to transform a short, vague user prompt into a comprehensive, refined prompt. By leveraging Chain-of-Thought reasoning, our framework effectively infers hidden context and enriches scene and background details. To iteratively refine the prompt, a self-evaluation agent aligns the modified prompt with the original input, while a feedback-tuning agent incorporates user feedback for further refinement. Experimental results demonstrate that PromptSculptor significantly enhances output quality and reduces the number of iterations needed for user satisfaction. Moreover, its model-agnostic design allows seamless integration with various T2I models, paving the way for industrial applications.
Current AI alignment through RLHF follows a single directional paradigm that AI conforms to human preferences while treating human cognition as fixed. We propose a shift to co-alignment through Bidirectional Cognitive Alignment (BiCA), where humans and AI mutually adapt. BiCA uses learnable protocols, representation mapping, and KL-budget constraints for controlled co-evolution. In collaborative navigation, BiCA achieved 85.5% success versus 70.3% baseline, with 230% better mutual adaptation and 332% better protocol convergence. Emergent protocols outperformed handcrafted ones by 84%, while bidirectional adaptation unexpectedly improved safety (+23% out-of-distribution robustness). The 46% synergy improvement demonstrates optimal collaboration exists at the intersection, not union, of human and AI capabilities, validating the shift from single-directional to co-alignment paradigms.
Although browser-using agents (BUAs) show promise for web tasks and automation, most BUAs terminate after executing a single instruction, failing to support users' complex, nonlinear browsing with ambiguous goals, iterative decision-making, and changing contexts. We present a human-in-the-loop (HITL) conceptual framework informed by theories of human web browsing behavior. The framework centers on an iterative loop in which the BUA proactively proposes next actions and the user steers the browsing process through feedback. It also distinguishes between exploration and exploitation actions, enabling users to control the breadth and depth of their browsing. Consequently, the framework aims to reduce users' physical and cognitive effort while preserving users' traditional browsing mental model and supporting users in achieving satisfactory outcomes. We illustrate how the framework operates with hypothetical use cases and discuss the shift from manual browsing to interaction-driven browsing. We contribute a theoretically informed conceptual framework for BUAs.
The development of intelligent agents, particularly those powered by language models (LMs), has shown the critical role in various environments that require intelligent and autonomous decision. Environments are not passive testing grounds and they represent the data required for agents to learn and exhibit very challenging conditions that require adaptive, complex and autonomous capacity to make decisions. While the paradigm of scaling models and datasets has led to remarkable emergent capabilities, we argue that scaling the structure, fidelity, and logical consistency of agent reasoning within these environments is a crucial, yet underexplored, dimension of AI research. This paper introduces a neuro-symbolic multi-agent architecture where the belief states of individual agents are formally represented as Kripke models. This foundational choice enables them to reason about known concepts of \emph{possibility} and \emph{necessity} using the formal language of modal logic. In this work, we use of immutable, domain-specific knowledge to make infere information, which is encoded as logical constraints essential for proper diagnosis. In the proposed model, we show constraints that actively guide the hypothesis generation of LMs, effectively preventing them from reaching physically or logically untenable conclusions. In a high-fidelity simulated particle accelerator environment, our system successfully diagnoses complex, cascading failures by combining the powerful semantic intuition of LMs with the rigorous, verifiable validation of modal logic and a factual world model and showcasing a viable path toward more robust, reliable, and verifiable autonomous agents.
Static analysis tools are widely used to detect bugs, vulnerabilities, and code smells. Traditionally, developers must resolve these warnings manually. Because this process is tedious, developers sometimes ignore warnings, leading to an accumulation of warnings and a degradation of code quality. This paper presents CodeCureAgent, an approach that harnesses LLM-based agents to automatically analyze, classify, and repair static analysis warnings. Unlike previous work, our method does not follow a predetermined algorithm. Instead, we adopt an agentic framework that iteratively invokes tools to gather additional information from the codebase (e.g., via code search) and edit the codebase to resolve the warning. CodeCureAgent detects and suppresses false positives, while fixing true positives when identified. We equip CodeCureAgent with a three-step heuristic to approve patches: (1) build the project, (2) verify that the warning disappears without introducing new warnings, and (3) run the test suite. We evaluate CodeCureAgent on a dataset of 1,000 SonarQube warnings found in 106 Java projects and covering 291 distinct rules. Our approach produces plausible fixes for 96.8% of the warnings, outperforming state-of-the-art baseline approaches by 30.7% and 29.2% in plausible-fix rate, respectively. Manual inspection of 291 cases reveals a correct-fix rate of 86.3%, showing that CodeCureAgent can reliably repair static analysis warnings. The approach incurs LLM costs of about 2.9 cents (USD) and an end-to-end processing time of about four minutes per warning. We envision CodeCureAgent helping to clean existing codebases and being integrated into CI/CD pipelines to prevent the accumulation of static analysis warnings.
This study investigates differential games with motion-payoff uncertainty in continuous-time settings. We propose a framework where players update their beliefs about uncertain parameters using continuous Bayesian updating. Theoretical proofs leveraging key probability theorems demonstrate that players' beliefs converge to the true parameter values, ensuring stability and accuracy in long-term estimations. We further derive Nash Equilibrium strategies with continuous Bayesian updating for players, emphasizing the role of belief updates in decision-making processes. Additionally, we establish the convergence of Nash Equilibrium strategies with continuous Bayesian updating. The efficacy of both continuous and dynamic Bayesian updating is examined in the context of pollution control games, showing convergence in players' estimates under small time intervals in discrete scenarios.
Multi-agent debate (MAD) has demonstrated the ability to augment collective intelligence by scaling test-time compute and leveraging expertise. Current frameworks for multi-agent debate are often designed towards tool use, lack integrated evaluation, or provide limited configurability of agent personas, response generators, discussion paradigms, and decision protocols. We introduce MALLM (Multi-Agent Large Language Models), an open-source framework that enables systematic analysis of MAD components. MALLM offers more than 144 unique configurations of MAD, including (1) agent personas (e.g., Expert, Personality), (2) response generators (e.g., Critical, Reasoning), (3) discussion paradigms (e.g., Memory, Relay), and (4) decision protocols (e.g., Voting, Consensus). MALLM uses simple configuration files to define a debate. Furthermore, MALLM can load any textual Huggingface dataset (e.g., MMLU-Pro, WinoGrande) and provides an evaluation pipeline for easy comparison of MAD configurations. MALLM is tailored towards researchers and provides a window into the heart of multi-agent debate, facilitating the understanding of its components and their interplay.
Anti-money laundering (AML) research is constrained by the lack of publicly shareable, regulation-aligned transaction datasets. We present AMLNet, a knowledge-based multi-agent framework with two coordinated units: a regulation-aware transaction generator and an ensemble detection pipeline. The generator produces 1,090,173 synthetic transactions (approximately 0.16\% laundering-positive) spanning core laundering phases (placement, layering, integration) and advanced typologies (e.g., structuring, adaptive threshold behavior). Regulatory alignment reaches 75\% based on AUSTRAC rule coverage (Section 4.2), while a composite technical fidelity score of 0.75 summarizes temporal, structural, and behavioral realism components (Section 4.4). The detection ensemble achieves F1 0.90 (precision 0.84, recall 0.97) on the internal test partitions of AMLNet and adapts to the external SynthAML dataset, indicating architectural generalizability across different synthetic generation paradigms. We provide multi-dimensional evaluation (regulatory, temporal, network, behavioral) and release the dataset (Version 1.0, https://doi.org/10.5281/zenodo.16736515), to advance reproducible and regulation-conscious AML experimentation.
As underwater human activities are increasing, the demand for underwater communication service presents a significant challenge. Existing underwater diver communication methods face hurdles due to inherent disadvantages and complex underwater environments. To address this issue, we propose a scheme that utilizes maritime unmanned systems to assist divers with reliable and high-speed communication. Multiple AUVs are equipped with optical and acoustic multimodal communication devices as relay nodes, providing adaptive communication services based on changes in the diver's activity area. By using a multi-agent reinforcement learning (MARL) approach to control the cooperative movement of AUVs, high-speed and reliable data transmission between divers can be achieved. At the same time, utilizing the advantages of on-demand deployment and wide coverage of unmanned surface vehicles (USVs) as surface relay nodes to coordinate and forward information from AUVs, and controlling AUVs to adaptively select relay USV nodes for data transmission, high-quality communication between divers and surface platform can be achieved. Through simulation verification, the proposed scheme can effectively achieve reliable and high-speed communication for divers.
A perfect clone in an ordinal election (i.e., an election where the voters rank the candidates in a strict linear order) is a set of candidates that each voter ranks consecutively. We consider different relaxations of this notion: independent or subelection clones are sets of candidates that only some of the voters recognize as a perfect clone, whereas approximate clones are sets of candidates such that every voter ranks their members close to each other, but not necessarily consecutively. We establish the complexity of identifying such imperfect clones, and of partitioning the candidates into families of imperfect clones. We also study the parameterized complexity of these problems with respect to a set of natural parameters such as the number of voters, the size or the number of imperfect clones we are searching for, or their level of imperfection.
Neural Cellular Automata (NCA) represent a powerful framework for modeling biological self-organization, extending classical rule-based systems with trainable, differentiable (or evolvable) update rules that capture the adaptive self-regulatory dynamics of living matter. By embedding Artificial Neural Networks (ANNs) as local decision-making centers and interaction rules between localized agents, NCA can simulate processes across molecular, cellular, tissue, and system-level scales, offering a multiscale competency architecture perspective on evolution, development, regeneration, aging, morphogenesis, and robotic control. These models not only reproduce biologically inspired target patterns but also generalize to novel conditions, demonstrating robustness to perturbations and the capacity for open-ended adaptation and reasoning. Given their immense success in recent developments, we here review current literature of NCAs that are relevant primarily for biological or bioengineering applications. Moreover, we emphasize that beyond biology, NCAs display robust and generalizing goal-directed dynamics without centralized control, e.g., in controlling or regenerating composite robotic morphologies or even on cutting-edge reasoning tasks such as ARC-AGI-1. In addition, the same principles of iterative state-refinement is reminiscent to modern generative Artificial Intelligence (AI), such as probabilistic diffusion models. Their governing self-regulatory behavior is constraint to fully localized interactions, yet their collective behavior scales into coordinated system-level outcomes. We thus argue that NCAs constitute a unifying computationally lean paradigm that not only bridges fundamental insights from multiscale biology with modern generative AI, but have the potential to design truly bio-inspired collective intelligence capable of hierarchical reasoning and control.
Autonomous agents for desktop automation struggle with complex multi-step tasks due to poor coordination and inadequate quality control. We introduce Agentic Lybic, a novel multi-agent system where the entire architecture operates as a finite-state machine (FSM). This core innovation enables dynamic orchestration. Our system comprises four components: a Controller, a Manager, three Workers (Technician for code-based operations, Operator for GUI interactions, and Analyst for decision support), and an Evaluator. The critical mechanism is the FSM-based routing between these components, which provides flexibility and generalization by dynamically selecting the optimal execution strategy for each subtask. This principled orchestration, combined with robust quality gating, enables adaptive replanning and error recovery. Evaluated officially on the OSWorld benchmark, Agentic Lybic achieves a state-of-the-art 57.07% success rate in 50 steps, substantially outperforming existing methods. Results demonstrate that principled multi-agent orchestration with continuous quality control provides superior reliability for generalized desktop automation in complex computing environments.
The rapid progress of large language models (LLMs) has opened new opportunities for education. While learners can interact with academic papers through LLM-powered dialogue, limitations still exist: absence of structured organization and high text reliance can impede systematic understanding and engagement with complex concepts. To address these challenges, we propose Auto-Slides, an LLM-driven system that converts research papers into pedagogically structured, multimodal slides (e.g., diagrams and tables). Drawing on cognitive science, it creates a presentation-oriented narrative and allows iterative refinement via an interactive editor, in order to match learners' knowledge level and goals. Auto-Slides further incorporates verification and knowledge retrieval mechanisms to ensure accuracy and contextual completeness. Through extensive user studies, Auto-Slides enhances learners' comprehension and engagement compared to conventional LLM-based reading. Our contributions lie in designing a multi-agent framework for transforming academic papers into pedagogically optimized slides and introducing interactive customization for personalized learning.