Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Credit assignment has remained a fundamental challenge in multi-agent reinforcement learning (MARL). Previous studies have primarily addressed this issue through value decomposition methods under the centralized training with decentralized execution paradigm, where neural networks are utilized to approximate the nonlinear relationship between individual Q-values and the global Q-value. Although these approaches have achieved considerable success in various benchmark tasks, they still suffer from several limitations, including imprecise attribution of contributions, limited interpretability, and poor scalability in high-dimensional state spaces. To address these challenges, we propose a novel algorithm, \textbf{QLLM}, which facilitates the automatic construction of credit assignment functions using large language models (LLMs). Specifically, the concept of \textbf{TFCAF} is introduced, wherein the credit allocation process is represented as a direct and expressive nonlinear functional formulation. A custom-designed \textit{coder-evaluator} framework is further employed to guide the generation, verification, and refinement of executable code by LLMs, significantly mitigating issues such as hallucination and shallow reasoning during inference. Extensive experiments conducted on several standard MARL benchmarks demonstrate that the proposed method consistently outperforms existing state-of-the-art baselines. Moreover, QLLM exhibits strong generalization capability and maintains compatibility with a wide range of MARL algorithms that utilize mixing networks, positioning it as a promising and versatile solution for complex multi-agent scenarios.
Climate policy development faces significant challenges due to deep uncertainty, complex system dynamics, and competing stakeholder interests. Climate simulation methods, such as Earth System Models, have become valuable tools for policy exploration. However, their typical use is for evaluating potential polices, rather than directly synthesizing them. The problem can be inverted to optimize for policy pathways, but the traditional optimization approaches often struggle with non-linear dynamics, heterogeneous agents, and comprehensive uncertainty quantification. We propose a framework for augmenting climate simulations with Multi-Agent Reinforcement Learning (MARL) to address these limitations. We identify key challenges at the interface between climate simulations and the application of MARL in the context of policy synthesis, including reward definition, scalability with increasing agents and state spaces, uncertainty propagation across linked systems, and solution validation. Additionally, we discuss challenges in making MARL-derived solutions interpretable and useful for policy-makers. Our framework provides a foundation for more sophisticated climate policy exploration while acknowledging important limitations and areas for future research.
This paper proposes the "Academy of Athens" multi-agent seven-layer framework, aimed at systematically addressing challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation, such as collaboration efficiency, role allocation, environmental adaptation, and task parallelism. The framework divides MAS into seven layers: multi-agent collaboration, single-agent multi-role playing, single-agent multi-scene traversal, single-agent multi-capability incarnation, different single agents using the same large model to achieve the same target agent, single-agent using different large models to achieve the same target agent, and multi-agent synthesis of the same target agent. Through experimental validation in art creation, the framework demonstrates its unique advantages in task collaboration, cross-scene adaptation, and model fusion. This paper further discusses current challenges such as collaboration mechanism optimization, model stability, and system security, proposing future exploration through technologies like meta-learning and federated learning. The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
This paper presents an adversary model and a simulation framework specifically tailored for analyzing attacks on distributed systems composed of multiple distributed protocols, with a focus on assessing the security of blockchain networks. Our model classifies and constrains adversarial actions based on the assumptions of the target protocols, defined by failure models, communication models, and the fault tolerance thresholds of Byzantine Fault Tolerant (BFT) protocols. The goal is to study not only the intended effects of adversarial strategies but also their unintended side effects on critical system properties. We apply this framework to analyze fairness properties in a Hyperledger Fabric (HF) blockchain network. Our focus is on novel fairness attacks that involve coordinated adversarial actions across various HF services. Simulations show that even a constrained adversary can violate fairness with respect to specific clients (client fairness) and impact related guarantees (order fairness), which relate the reception order of transactions to their final order in the blockchain. This paper significantly extends our previous work by introducing and evaluating a mitigation mechanism specifically designed to counter transaction reordering attacks. We implement and integrate this defense into our simulation environment, demonstrating its effectiveness under diverse conditions.
Zero-shot coordination (ZSC), the ability to adapt to a new partner in a cooperative task, is a critical component of human-compatible AI. While prior work has focused on training agents to cooperate on a single task, these specialized models do not generalize to new tasks, even if they are highly similar. Here, we study how reinforcement learning on a distribution of environments with a single partner enables learning general cooperative skills that support ZSC with many new partners on many new problems. We introduce two Jax-based, procedural generators that create billions of solvable coordination challenges. We develop a new paradigm called Cross-Environment Cooperation (CEC), and show that it outperforms competitive baselines quantitatively and qualitatively when collaborating with real people. Our findings suggest that learning to collaborate across many unique scenarios encourages agents to develop general norms, which prove effective for collaboration with different partners. Together, our results suggest a new route toward designing generalist cooperative agents capable of interacting with humans without requiring human data.
Provenance is the chronology of things, resonating with the fundamental pursuit to uncover origins, trace connections, and situate entities within the flow of space and time. As artificial intelligence advances towards autonomous agents capable of interactive collaboration on complex tasks, the provenance of generated content becomes entangled in the interplay of collective creation, where contributions are continuously revised, extended or overwritten. In a multi-agent generative chain, content undergoes successive transformations, often leaving little, if any, trace of prior contributions. In this study, we investigates the problem of tracking multi-agent provenance across the temporal dimension of generation. We propose a chronological system for post hoc attribution of generative history from content alone, without reliance on internal memory states or external meta-information. At its core lies the notion of symbolic chronicles, representing signed and time-stamped records, in a form analogous to the chain of custody in forensic science. The system operates through a feedback loop, whereby each generative timestep updates the chronicle of prior interactions and synchronises it with the synthetic content in the very act of generation. This research seeks to develop an accountable form of collaborative artificial intelligence within evolving cyber ecosystems.
TextArena is an open-source collection of competitive text-based games for training and evaluation of agentic behavior in Large Language Models (LLMs). It spans 57+ unique environments (including single-player, two-player, and multi-player setups) and allows for easy evaluation of model capabilities via an online-play system (against humans and other submitted models) with real-time TrueSkill scores. Traditional benchmarks rarely assess dynamic social skills such as negotiation, theory of mind, and deception, creating a gap that TextArena addresses. Designed with research, community and extensibility in mind, TextArena emphasizes ease of adding new games, adapting the framework, testing models, playing against the models, and training models. Detailed documentation of environments, games, leaderboard, and examples are available on https://github.com/LeonGuertler/TextArena and https://www.textarena.ai/.
Urban causal research is essential for understanding the complex dynamics of cities and informing evidence-based policies. However, it is challenged by the inefficiency and bias of hypothesis generation, barriers to multimodal data complexity, and the methodological fragility of causal experimentation. Recent advances in large language models (LLMs) present an opportunity to rethink how urban causal analysis is conducted. This Perspective examines current urban causal research by analyzing taxonomies that categorize research topics, data sources, and methodological approaches to identify structural gaps. We then introduce an LLM-driven conceptual framework, AutoUrbanCI, composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy recommendations. We propose evaluation criteria for rigor and transparency and reflect on implications for human-AI collaboration, equity, and accountability. We call for a new research agenda that embraces AI-augmented workflows not as replacements for human expertise but as tools to broaden participation, improve reproducibility, and unlock more inclusive forms of urban causal reasoning.
The traditional Artificial Potential Field (APF) method exhibits limitations in its force distribution: excessive attraction when UAVs are far from the target may cause collisions with obstacles, while insufficient attraction near the goal often results in failure to reach the target. Furthermore, APF is highly susceptible to local minima, compromising motion reliability in complex environments. To address these challenges, this paper presents a novel hybrid obstacle avoidance algorithm-Deflected Simulated Annealing-Adaptive Artificial Potential Field (DSA-AAPF)-which combines an improved simulated annealing mechanism with an enhanced APF model. The proposed approach integrates a Leader-Follower distributed formation strategy with the APF framework, where the resultant force formulation is redefined to smooth UAV trajectories. An adaptive gravitational gain function is introduced to dynamically adjust UAV velocity based on environmental context, and a fast-converging controller ensures accurate and efficient convergence to the target. Moreover, a directional deflection mechanism is embedded within the simulated annealing process, enabling UAVs to escape local minima caused by semi-enclosed obstacles through continuous rotational motion. The simulation results, covering formation reconfiguration, complex obstacle avoidance, and entrapment escape, demonstrate the feasibility, robustness, and superiority of the proposed DSA-AAPF algorithm.
The rise of autonomous AI agents, capable of perceiving, reasoning, and acting independently, signals a profound shift in how digital ecosystems operate, govern, and evolve. As these agents proliferate beyond centralized infrastructures, they expose foundational gaps in identity, accountability, and ethical alignment. Three critical questions emerge: Identity: Who or what is the agent? Accountability: Can its actions be verified, audited, and trusted? Ethical Consensus: Can autonomous systems reliably align with human values and prevent harmful emergent behaviors? We present the novel LOKA Protocol (Layered Orchestration for Knowledgeful Agents), a unified, systems-level architecture for building ethically governed, interoperable AI agent ecosystems. LOKA introduces a proposed Universal Agent Identity Layer (UAIL) for decentralized, verifiable identity; intent-centric communication protocols for semantic coordination across diverse agents; and a Decentralized Ethical Consensus Protocol (DECP) that enables agents to make context-aware decisions grounded in shared ethical baselines. Anchored in emerging standards such as Decentralized Identifiers (DIDs), Verifiable Credentials (VCs), and post-quantum cryptography, LOKA offers a scalable, future-resilient blueprint for multi-agent AI governance. By embedding identity, trust, and ethics into the protocol layer itself, LOKA establishes the foundation for a new era of responsible, transparent, and autonomous AI ecosystems operating across digital and physical domains.
In this paper, we develop a systematic framework for the time-sequential compression of dynamic probabilistic occupancy grids. Our approach leverages ideas from signal compression theory to formulate an optimization problem that searches for a multi-resolution hierarchical encoder that balances the quality of the compressed map (distortion) with its description size, the latter of which relates to the bandwidth required to reliably transmit the map to other agents or to store map estimates in on-board memory. The resulting optimization problem allows for multi-resolution map compressions to be obtained that satisfy available communication or memory resources, and does not require knowledge of the occupancy map dynamics. We develop an algorithm to solve our problem, and demonstrate the utility of the proposed framework in simulation on both static (i.e., non-time varying) and dynamic (time-varying) occupancy maps.
In this paper, we present a multi-agent reinforcement learning (MARL) framework for optimizing tissue repair processes using engineered biological agents. Our approach integrates: (1) stochastic reaction-diffusion systems modeling molecular signaling, (2) neural-like electrochemical communication with Hebbian plasticity, and (3) a biologically informed reward function combining chemical gradient tracking, neural synchronization, and robust penalties. A curriculum learning scheme guides the agent through progressively complex repair scenarios. In silico experiments demonstrate emergent repair strategies, including dynamic secretion control and spatial coordination.
Effective pest management is complex due to the need for accurate, context-specific decisions. Recent advancements in large language models (LLMs) open new possibilities for addressing these challenges by providing sophisticated, adaptive knowledge acquisition and reasoning. However, existing LLM-based pest management approaches often rely on a single-agent paradigm, which can limit their capacity to incorporate diverse external information, engage in systematic validation, and address complex, threshold-driven decisions. To overcome these limitations, we introduce PestMA, an LLM-based multi-agent system (MAS) designed to generate reliable and evidence-based pest management advice. Building on an editorial paradigm, PestMA features three specialized agents, an Editor for synthesizing pest management recommendations, a Retriever for gathering relevant external data, and a Validator for ensuring correctness. Evaluations on real-world pest scenarios demonstrate that PestMA achieves an initial accuracy of 86.8% for pest management decisions, which increases to 92.6% after validation. These results underscore the value of collaborative agent-based workflows in refining and validating decisions, highlighting the potential of LLM-based multi-agent systems to automate and enhance pest management processes.
Dominance is a fundamental concept in game theory. In strategic-form games dominated strategies can be identified in polynomial time. As a consequence, iterative removal of dominated strategies can be performed efficiently as a preprocessing step for reducing the size of a game before computing a Nash equilibrium. For imperfect-information games in extensive form, we could convert the game to strategic form and then iteratively remove dominated strategies in the same way; however, this conversion may cause an exponential blowup in game size. In this paper we define and study the concept of dominated actions in imperfect-information games. Our main result is a polynomial-time algorithm for determining whether an action is dominated (strictly or weakly) by any mixed strategy in n-player games, which can be extended to an algorithm for iteratively removing dominated actions. This allows us to efficiently reduce the size of the game tree as a preprocessing step for Nash equilibrium computation. We explore the role of dominated actions empirically in the "All In or Fold" No-Limit Texas Hold'em poker variant.
Multi-agent large language model simulations have the potential to model complex human behaviors and interactions. If the mechanics are set up properly, unanticipated and valuable social dynamics can surface. However, it is challenging to consistently enforce simulation mechanics while still allowing for notable and emergent dynamics. We present AgentDynEx, an AI system that helps set up simulations from user-specified mechanics and dynamics. AgentDynEx uses LLMs to guide users through a Configuration Matrix to identify core mechanics and define milestones to track dynamics. It also introduces a method called \textit{nudging}, where the system dynamically reflects on simulation progress and gently intervenes if it begins to deviate from intended outcomes. A technical evaluation found that nudging enables simulations to have more complex mechanics and maintain its notable dynamics compared to simulations without nudging. We discuss the importance of nudging as a technique for balancing mechanics and dynamics of multi-agent simulations.
We propose the Metropolis-Hastings Captioning Game (MHCG), a method to fuse knowledge of multiple vision-language models (VLMs) by learning from each other. Although existing methods that combine multiple models suffer from inference costs and architectural constraints, MHCG avoids these problems by performing decentralized Bayesian inference through a process resembling a language game. The knowledge fusion process establishes communication between two VLM agents alternately captioning images and learning from each other. We conduct two image-captioning experiments with two VLMs, each pre-trained on a different dataset. The first experiment demonstrates that MHCG achieves consistent improvement in reference-free evaluation metrics. The second experiment investigates how MHCG contributes to sharing VLMs' category-level vocabulary by observing the occurrence of the vocabulary in the generated captions.
Multi-agent systems seeking consensus may also have other objective functions to optimize, requiring the research of multi-objective optimization in consensus. Several recent publications have explored this domain using various methods such as weighted-sum optimization and penalization methods. This paper reviews the state of the art for consensus-based multi-objective optimization, poses a multi-agent lunar rover exploration problem seeking consensus and maximization of explored area, and achieves optimal edge weights and steering angles by applying SQP algorithms.
Cooperative missions involving Unmanned Aerial Vehicles (UAVs) in dynamic environments pose significant challenges in ensuring both coordination and agility. In this paper, we introduce a novel game-theoretic approach for time-critical missions, where each UAV optimizes a cost function that incorporates temporal and mission-specific constraints. The optimization is performed within a one-dimensional domain, significantly reducing the computational cost and enabling real-time application to complex and dynamic scenarios. The framework is distributed in structure, allowing to achieve global, system-wide coordination (a Nash equilibrium) by using only local information. For ideal systems, we prove the existence and exponential stability of the Nash equilibrium. Furthermore, we invoke model predictive control (MPC) for non-ideal scenarios. In particular, we propose a discrete-time optimization approach that tackles path-following errors and communication failures, ensuring reliable and agile performance in dynamic and uncertain environments. Simulation results demonstrate the effectiveness and agility of the approach in ensuring successful mission execution across diverse scenarios. Experiments using a motion capture system provide further validation under realistic conditions.