Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
As large language models (LLMs) advance, there is growing interest in using them to simulate human social behavior through generative agent-based modeling (GABM). However, validating these models remains a key challenge. We present a systematic two-stage validation approach using social dilemma paradigms from psychological literature, first identifying the cognitive components necessary for LLM agents to reproduce known human behaviors in mixed-motive settings from two landmark papers, then using the validated architecture to simulate novel conditions. Our model comparison of different cognitive architectures shows that both persona-based individual differences and theory of mind capabilities are essential for replicating third-party punishment (TPP) as a costly signal of trustworthiness. For the second study on public goods games, this architecture is able to replicate an increase in cooperation from the spread of reputational information through gossip. However, an additional strategic component is necessary to replicate the additional boost in cooperation rates in the condition that allows both ostracism and gossip. We then test novel predictions for each paper with our validated generative agents. We find that TPP rates significantly drop in settings where punishment is anonymous, yet a substantial amount of TPP persists, suggesting that both reputational and intrinsic moral motivations play a role in this behavior. For the second paper, we introduce a novel intervention and see that open discussion periods before rounds of the public goods game further increase contributions, allowing groups to develop social norms for cooperation. This work provides a framework for validating generative agent models while demonstrating their potential to generate novel and testable insights into human social behavior.
Recently, the field of Multi-Agent Systems (MAS) has gained popularity as researchers are trying to develop artificial intelligence capable of efficient collective reasoning. Agents based on Large Language Models (LLMs) perform well in isolated tasks, yet struggle with higher-order cognition required for adaptive collaboration. Human teams achieve synergy not only through knowledge sharing, but also through recursive reasoning, structured critique, and the ability to infer others' mental states. Current artificial systems lack these essential mechanisms, limiting their ability to engage in sophisticated collective reasoning. This work explores cognitive processes that enable effective collaboration, focusing on adaptive theory of mind (ToM) and systematic critical evaluation. We investigate three key questions. First, how does the ability to model others' perspectives enhance coordination and reduce redundant reasoning? Second, to what extent does structured critique improve reasoning quality by identifying logical gaps and mitigating biases? Third, the interplay of these mechanisms can lead to emergent cognitive synergy, where the collective intelligence of the system exceeds the sum of its parts. Through an empirical case study on complex decision making, we show that the integration of these cognitive mechanisms leads to more coherent, adaptive, and rigorous agent interactions. This article contributes to the field of cognitive science and AI research by presenting a structured framework that emulates human-like collaborative reasoning MAS. It highlights the significance of dynamic ToM and critical evaluation in advancing multi-agent systems' ability to tackle complex, real-world challenges.
This study uses agent-based modeling to examine the impact of various recommendation algorithms on the propagation of misinformation on online social networks. We simulate a synthetic environment consisting of heterogeneous agents, including regular users, bots, and influencers, interacting through a social network with recommendation systems. We evaluate four recommendation strategies: popularity-based, collaborative filtering, and content-based filtering, along with a random baseline. Our results show that popularity-driven algorithms significantly amplify misinformation, while item-based collaborative filtering and content-based approaches are more effective in limiting exposure to fake content. Item-based collaborative filtering was found to perform better than previously reported in related literature. These findings highlight the role of algorithm design in shaping online information exposure and show that agent-based modeling can be used to gain realistic insight into how misinformation spreads.
In this paper we investigate the notion of legibility in sequential decision-making in the context of teams and teamwork. There have been works that extend the notion of legibility to sequential decision making, for deterministic and for stochastic scenarios. However, these works focus on one agent interacting with one human, foregoing the benefits of having legible decision making in teams of agents or in team configurations with humans. In this work we propose an extension of legible decision-making to multi-agent settings that improves the performance of agents working in collaboration. We showcase the performance of legible decision making in team scenarios using our proposed extension in multi-agent benchmark scenarios. We show that a team with a legible agent is able to outperform a team composed solely of agents with standard optimal behaviour.
Multi-Agent Systems (MAS) are increasingly used to simulate social interactions, but most of the frameworks miss the underlying cognitive complexity of human behavior. In this paper, we introduce Trans-ACT (Transactional Analysis Cognitive Toolkit), an approach embedding Transactional Analysis (TA) principles into MAS to generate agents with realistic psychological dynamics. Trans-ACT integrates the Parent, Adult, and Child ego states into an agent's cognitive architecture. Each ego state retrieves context-specific memories and uses them to shape response to new situations. The final answer is chosen according to the underlying life script of the agent. Our experimental simulation, which reproduces the Stupid game scenario, demonstrates that agents grounded in cognitive and TA principles produce deeper and context-aware interactions. Looking ahead, our research opens a new way for a variety of applications, including conflict resolution, educational support, and advanced social psychology studies.
Despite the rapid expansion of electric vehicle (EV) charging networks, questions remain about their efficiency in meeting the growing needs of EV drivers. Previous simulation-based approaches, which rely on static behavioural rules, have struggled to capture the adaptive behaviours of human drivers. Although reinforcement learning has been introduced in EV simulation studies, its application has primarily focused on optimising fleet operations rather than modelling private drivers who make independent charging decisions. Additionally, long-distance travel remains a primary concern for EV drivers. However, existing simulation studies rarely explore charging behaviour over large geographical scales. To address these gaps, we propose a multi-stage reinforcement learning framework that simulates EV charging demand across large geographical areas. We validate the model against real-world data, and identify the training stage that most closely reflects actual driver behaviour, which captures both the adaptive behaviours and bounded rationality of private drivers. Based on the simulation results, we also identify critical 'charging deserts' where EV drivers consistently have low state of charge. Our findings also highlight recent policy shifts toward expanding rapid charging hubs along motorway corridors and city boundaries to meet the demand from long-distance trips.
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13% for data preprocessing and an F$_1$ of 60.48% for gene identification, surpassing the best prior art by 10.61% and 16.85% respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
We introduce the first implementable framework for corrigibility, with provable guarantees in multi-step, partially observed environments. Our framework replaces a single opaque reward with five *structurally separate* utility heads -- deference, switch-access preservation, truthfulness, low-impact behavior via a belief-based extension of Attainable Utility Preservation, and bounded task reward -- combined lexicographically by strict weight gaps. Theorem 1 proves exact single-round corrigibility in the partially observable off-switch game; Theorem 3 extends the guarantee to multi-step, self-spawning agents, showing that even if each head is \emph{learned} to mean-squared error $\varepsilon$ and the planner is $\varepsilon$-sub-optimal, the probability of violating \emph{any} safety property is bounded while still ensuring net human benefit. In contrast to Constitutional AI or RLHF/RLAIF, which merge all norms into one learned scalar, our separation makes obedience and impact-limits dominate even when incentives conflict. For open-ended settings where adversaries can modify the agent, we prove that deciding whether an arbitrary post-hack agent will ever violate corrigibility is undecidable by reduction to the halting problem, then carve out a finite-horizon ``decidable island'' where safety can be certified in randomized polynomial time and verified with privacy-preserving, constant-round zero-knowledge proofs. Consequently, the remaining challenge is the ordinary ML task of data coverage and generalization: reward-hacking risk is pushed into evaluation quality rather than hidden incentive leak-through, giving clearer implementation guidance for today's LLM assistants and future autonomous systems.
To fully expedite AI-powered chemical research, high-quality chemical databases are the cornerstone. Automatic extraction of chemical information from the literature is essential for constructing reaction databases, but it is currently limited by the multimodality and style variability of chemical information. In this work, we developed a multimodal large language model (MLLM)-based multi-agent system for robust and automated chemical information extraction. It utilizes the MLLM's strong reasoning capability to understand the structure of diverse chemical graphics, decompose the extraction task into sub-tasks, and coordinate a set of specialized agents, each combining the capabilities of the MLLM with the precise, domain-specific strengths of dedicated tools, to solve them accurately and integrate the results into a unified output. Our system achieved an F1 score of 80.8% on a benchmark dataset of sophisticated multimodal chemical reaction graphics from the literature, surpassing the previous state-of-the-art model (F1 score of 35.6%) by a significant margin. Additionally, it demonstrated consistent improvements in key sub-tasks, including molecular image recognition, reaction image parsing, named entity recognition and text-based reaction extraction. This work is a critical step toward automated chemical information extraction into structured datasets, which will be a strong promoter of AI-driven chemical research.
Many real-world systems, such as transportation systems, ecological systems, and Internet systems, are complex systems. As an important tool for studying complex systems, computational experiments can map them into artificial society models that are computable and reproducible within computers, thereby providing digital and computational methods for quantitative analysis. In current research, the construction of individual agent models often ignores the long-term accumulative effect of memory mechanisms in the development process of agents, which to some extent causes the constructed models to deviate from the real characteristics of real-world systems. To address this challenge, this paper proposes an individual agent model based on a memory-learning collaboration mechanism, which implements hierarchical modeling of the memory mechanism and a multi-indicator evaluation mechanism. Through hierarchical modeling of the individual memory repository, the group memory repository, and the memory buffer pool, memory can be effectively managed, and knowledge sharing and dissemination between individuals and groups can be promoted. At the same time, the multi-indicator evaluation mechanism enables dynamic evaluation of memory information, allowing dynamic updates of information in the memory set and promoting collaborative decision-making between memory and learning. Experimental results show that, compared with existing memory modeling methods, the agents constructed by the proposed model demonstrate better decision-making quality and adaptability within the system. This verifies the effectiveness of the individual agent model based on the memory-learning collaboration mechanism proposed in this paper in improving the quality of individual-level modeling in artificial society modeling and achieving anthropomorphic characteristics.
Diffusion models have become a powerful backbone for text-to-image generation, enabling users to synthesize high-quality visuals from natural language prompts. However, they often struggle with complex prompts involving multiple objects and global or local style specifications. In such cases, the generated scenes tend to lack style uniformity and spatial coherence, limiting their utility in creative and controllable content generation. In this paper, we propose a simple, training-free architectural method called Local Prompt Adaptation (LPA). Our method decomposes the prompt into content and style tokens, and injects them selectively into the U-Net's attention layers at different stages. By conditioning object tokens early and style tokens later in the generation process, LPA enhances both layout control and stylistic consistency. We evaluate our method on a custom benchmark of 50 style-rich prompts across five categories and compare against strong baselines including Composer, MultiDiffusion, Attend-and-Excite, LoRA, and SDXL. Our approach outperforms prior work on both CLIP score and style consistency metrics, offering a new direction for controllable, expressive diffusion-based generation.
Multi-agent trajectory planning requires ensuring both safety and efficiency, yet deadlocks remain a significant challenge, especially in obstacle-dense environments. Such deadlocks frequently occur when multiple agents attempt to traverse the same long and narrow corridor simultaneously. To address this, we propose a novel distributed trajectory planning framework that bridges the gap between global path and local trajectory cooperation. At the global level, a homotopy-aware optimal path planning algorithm is proposed, which fully leverages the topological structure of the environment. A reference path is chosen from distinct homotopy classes by considering both its spatial and temporal properties, leading to improved coordination among agents globally. At the local level, a model predictive control-based trajectory optimization method is used to generate dynamically feasible and collision-free trajectories. Additionally, an online replanning strategy ensures its adaptability to dynamic environments. Simulations and experiments validate the effectiveness of our approach in mitigating deadlocks. Ablation studies demonstrate that by incorporating time-aware homotopic properties into the underlying global paths, our method can significantly reduce deadlocks and improve the average success rate from 4%-13% to over 90% in randomly generated dense scenarios.
This paper introduces a model for coordinating prosumers with heterogeneous distributed energy resources (DERs), participating in the local energy market (LEM) that interacts with the market-clearing entity. The proposed LEM scheme utilizes a data-driven, model-free reinforcement learning approach based on the multi-agent deep deterministic policy gradient (MADDPG) framework, enabling prosumers to make real-time decisions on whether to buy, sell, or refrain from any action while facilitating efficient coordination for optimal energy trading in a dynamic market. In addition, we investigate a price manipulation strategy using a variational auto encoder-generative adversarial network (VAE-GAN) model, which allows utilities to adjust price signals in a way that induces financial losses for the prosumers. Our results show that under adversarial pricing, heterogeneous prosumer groups, particularly those lacking generation capabilities, incur financial losses. The same outcome holds across LEMs of different sizes. As the market size increases, trading stabilizes and fairness improves through emergent cooperation among agents.
We develop an operator algebraic framework for infinite games with a continuum of agents and prove that regret based learning dynamics governed by a noncommutative continuity equation converge to a unique quantal response equilibrium under mild regularity assumptions. The framework unifies functional analysis, coarse geometry and game theory by assigning to every game a von Neumann algebra that represents collective strategy evolution. A reflective regret operator within this algebra drives the flow of strategy distributions and its fixed point characterises equilibrium. We introduce the ordinal folding index, a computable ordinal valued metric that measures the self referential depth of the dynamics, and show that it bounds the transfinite time needed for convergence, collapsing to zero on coarsely amenable networks. The theory yields new invariant subalgebra rigidity results, establishes existence and uniqueness of envy free and maximin share allocations in continuum economies, and links analytic properties of regret flows with empirical stability phenomena in large language models. These contributions supply a rigorous mathematical foundation for large scale multi agent systems and demonstrate the utility of ordinal metrics for equilibrium selection.
Classical game-theoretic models typically assume rational agents, complete information, and common knowledge of payoffs - assumptions that are often violated in real-world MAS characterized by uncertainty, misaligned perceptions, and nested beliefs. To overcome these limitations, researchers have proposed extensions that incorporate models of cognitive constraints, subjective beliefs, and heterogeneous reasoning. Among these, hypergame theory extends the classical paradigm by explicitly modeling agents' subjective perceptions of the strategic scenario, known as perceptual games, in which agents may hold divergent beliefs about the structure, payoffs, or available actions. We present a systematic review of agent-compatible applications of hypergame theory, examining how its descriptive capabilities have been adapted to dynamic and interactive MAS contexts. We analyze 44 selected studies from cybersecurity, robotics, social simulation, communications, and general game-theoretic modeling. Building on a formal introduction to hypergame theory and its two major extensions - hierarchical hypergames and HNF - we develop agent-compatibility criteria and an agent-based classification framework to assess integration patterns and practical applicability. Our analysis reveals prevailing tendencies, including the prevalence of hierarchical and graph-based models in deceptive reasoning and the simplification of extensive theoretical frameworks in practical applications. We identify structural gaps, including the limited adoption of HNF-based models, the lack of formal hypergame languages, and unexplored opportunities for modeling human-agent and agent-agent misalignment. By synthesizing trends, challenges, and open research directions, this review provides a new roadmap for applying hypergame theory to enhance the realism and effectiveness of strategic modeling in dynamic multi-agent environments.
This paper presents MCP4EDA, the first Model Context Protocol server that enables Large Language Models (LLMs) to control and optimize the complete open-source RTL-to-GDSII design flow through natural language interaction. The system integrates Yosys synthesis, Icarus Verilog simulation, OpenLane place-and-route, GTKWave analysis, and KLayout visualization into a unified LLM-accessible interface, enabling designers to execute complex multi-tool EDA workflows conversationally via AI assistants such as Claude Desktop and Cursor IDE. The principal contribution is a backend-aware synthesis optimization methodology wherein LLMs analyze actual post-layout timing, power, and area metrics from OpenLane results to iteratively refine synthesis TCL scripts, establishing a closed-loop optimization system that bridges the traditional gap between synthesis estimates and physical implementation reality. In contrast to conventional flows that rely on wire-load models, this methodology leverages real backend performance data to guide synthesis parameter tuning, optimization sequence selection, and constraint refinement, with the LLM functioning as an intelligent design space exploration agent. Experimental evaluation on representative digital designs demonstrates 15-30% improvements in timing closure and 10-20% area reduction compared to default synthesis flows, establishing MCP4EDA as the first practical LLM-controlled end-to-end open-source EDA automation system. The code and demo are avaiable at: http://www.agent4eda.com/
This position paper examines the use of Large Language Models (LLMs) in social simulation, analyzing both their potential and their limitations from a computational social science perspective. The first part reviews recent findings on the ability of LLMs to replicate key aspects of human cognition, including Theory of Mind reasoning and social inference, while also highlighting significant limitations such as cognitive biases, lack of true understanding, and inconsistencies in behavior. The second part surveys emerging applications of LLMs in multi-agent simulation frameworks, focusing on system architectures, scale, and validation strategies. Notable projects such as Generative Agents (Smallville) and AgentSociety are discussed in terms of their design choices, empirical grounding, and methodological innovations. Particular attention is given to the challenges of behavioral fidelity, calibration, and reproducibility in large-scale LLM-driven simulations. The final section distinguishes between contexts where LLMs, like other black-box systems, offer direct value-such as interactive simulations and serious games-and those where their use is more problematic, notably in explanatory or predictive modeling. The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms (GAMA, Netlogo, etc), enabling modelers to combine the expressive flexibility of language-based reasoning with the transparency and analytical rigor of classical rule-based systems.
Constraint-based optimization is a cornerstone of robotics, enabling the design of controllers that reliably encode task and safety requirements such as collision avoidance or formation adherence. However, handcrafted constraints can fail in multi-agent settings that demand complex coordination. We introduce ReCoDe--Reinforcement-based Constraint Design--a decentralized, hybrid framework that merges the reliability of optimization-based controllers with the adaptability of multi-agent reinforcement learning. Rather than discarding expert controllers, ReCoDe improves them by learning additional, dynamic constraints that capture subtler behaviors, for example, by constraining agent movements to prevent congestion in cluttered scenarios. Through local communication, agents collectively constrain their allowed actions to coordinate more effectively under changing conditions. In this work, we focus on applications of ReCoDe to multi-agent navigation tasks requiring intricate, context-based movements and consensus, where we show that it outperforms purely handcrafted controllers, other hybrid approaches, and standard MARL baselines. We give empirical (real robot) and theoretical evidence that retaining a user-defined controller, even when it is imperfect, is more efficient than learning from scratch, especially because ReCoDe can dynamically change the degree to which it relies on this controller.