Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
Resistive AC-coupled Silicon Detectors (RSDs) are silicon sensors which provide high temporal and spatial resolution. The RSD is a candidate sensor to be used in future tracking detectors with the objective of obtaining '4D' tracking, where timing information can be used along with spatial hits during track finding. 4D tracking will be an essential part of any future lepton or hadron collider and may even be feasible at the HL-LHC. For applications at hadron colliders, RSD sensors must be able to operate in high fluence environments in order to provide 4D tracking. However, the effects of radiation on RSDs have not been extensively studied. In this study, RSDs were irradiated to $1.0$, $2.0$, and $3.5 \times 10^{15}$~cm$^{-2}$ (1~MeV neutron equivalents) with both protons and neutrons. The sensors were then characterized electrically to study the acceptor removal and, for the first time in this doping concentration range, the donor removal. Then, the Transient Current Technique was used to begin investigating the signal charge sharing after irradiation. The results suggest an interesting trend between acceptor and donor removal, which is worthy of further study and could assist in improving radiation hardness of Low Gain Avalanche Diodes (LGADs).
SuperSUN, a new superthermal source of ultracold neutrons (UCN) at the Institut Laue-Langevin, exploits inelastic scattering of neutrons in isotopically pure superfluid $^4$He at temperatures below $0.6\,$K. For the first time, continuous operation with an intense broad-spectrum cold neutron beam is demonstrated over 60 days. We observe continuous UCN extraction rates of $21000\,$s$^{-1}$, and storage in the source with saturated $\textit{in-situ}$ density $273\,$cm$^{-3}$. The high stored density, low-energy UCN spectrum, and long storage times open new possibilities in fundamental and applied physics.
This paper presents the reconstruction and performance evaluation of the FASER$\nu$ emulsion detector, which aims to measure interactions from neutrinos produced in the forward direction of proton-proton collisions at the CERN Large Hadron Collider. The detector, composed of tungsten plates interleaved with emulsion films, records charged particles with sub-micron precision. A key challenge arises from the extremely high track density environment, reaching $\mathcal{O}(10^5)$ tracks per cm$^2$. To address this, dedicated alignment techniques and track reconstruction algorithms have been developed, building on techniques from previous experiments and introducing further optimizations. The performance of the detector is studied by evaluating the single-film efficiency, position and angular resolution, and the impact parameter distribution of reconstructed vertices. The results demonstrate that an alignment precision of 0.3 micrometers and robust track and vertex reconstruction are achieved, enabling accurate neutrino measurements in the TeV energy range.
The study of novel quantum materials relies on muon-spin rotation, relaxation, or resonance (\mSR) measurements. Yet, a fundamental limitation persists: many of these materials can only be synthesized in extremely small quantities, often at sub-millimeter scales. While \mSR ~offers unique insights into electronic and magnetic properties, existing spectrometers lack a sub-millimeter spatial resolution and the possibility of triggerless pump-probe data acquisition, which would enable more advanced measurements. The General Purpose Surface-muon instrument (GPS) at the Paul Scherrer Institute (PSI) is currently limited to a muon stopping rate of \SI{40}{\kilo\hertz} to \SI{120}{\kilo\hertz}, a constraint that will become more pressing with the upcoming High-Intensity Muon Beam (HIMB) project. To overcome these challenges, we demonstrate the feasibility of employing ultra-thin monolithic Si-pixel detectors to reconstruct the stopping position of muons within the sample, thereby significantly enhancing the capability of measuring at higher muon rate. Additionally, we explore the first steps toward a triggerless pump-probe \mSR ~measurement scheme. Unlike conventional pump-probe techniques that require external triggers, a triggerless readout system can continuously integrate stimuli pulses into the data stream, allowing real-time tracking of ultra-fast dynamics in quantum materials. This approach will enable the study of transient states, spin dynamics, and quantum coherence under external stimuli.
In this contribution, we evaluate the sensitivity for particles with charges much smaller than the electron charge with a dedicated scintillator-based detector in the far forward region at the CERN LHC, FORMOSA. This contribution will outline the scientific case for this detector, its design and potential locations, and the sensitivity that can be achieved. The ongoing efforts to prove the feasibility of the detector with the FORMOSA demonstrator will be discussed. Finally, possible upgrades to the detector through the use of high-performance scintillator will be discussed.
Results from commissioning and first year of operations of the cryogenic system of the Short-Baseline Neutrino Detector (SBND) and its membrane cryostat installed at the Fermi National Accelerator Laboratory are described. The SBND detector is installed in a 200 m$^3$ membrane cryostat filled with liquid argon, which serves both as target and as active media. For the correct operation of the detector, the liquid argon must be kept in very stable thermal conditions while the contamination of electronegative impurities must be consistently kept at the level of small fractions of parts per billion. The detector is operated in Booster Neutrino Beams (BNB) at Fermilab for the search of sterile neutrinos and measurements of neutrino-argon cross sections. The cryostat and the cryogenic systems also serve as prototypes for the much larger equipment to be used for the LBNF/DUNE experiment. Since its installation in 2018-2023 and cooldown in spring of 2024, the cryostat and the cryogenic system have been commissioned to support the detector operations. The lessons learned through installation, testing, commissioning, cooldown, and initial operations are described.
We describe a resonant cavity search apparatus for axion dark matter constructed by the Quantum Sensors for the Hidden Sector (QSHS) collaboration. The apparatus is configured to search for QCD axion dark matter, though also has the capability to detect axion-like particles (ALPs), dark photons, and some other forms of wave-like dark matter. Initially, a tuneable cylindrical oxygen-free copper cavity is read out using a low noise microwave amplifier feeding a heterodyne receiver. The cavity is housed in a dilution refrigerator and threaded by a solenoidal magnetic field, nominally 8T. The apparatus also houses a magnetic field shield for housing superconducting electronics, and several other fixed-frequency resonators for use in testing and commissioning various prototype quantum electronic devices sensitive at a range of axion masses in the range $\rm 2.0$ to $\rm 40\,eV/c^2$. We present performance data for the resonator, dilution refrigerator, and magnet, and plans for the first science run.
Many modern digital analyzers offer the ability to record raw pulses from ionizing radiation detectors. We use this opportunity to investigate the effectiveness of Charge Comparison Method in Pulse Shape Discrimination of neutron and gamma radiation measured with organic glass scintillator and trans-stilbene. The idea of software for automated off-line analysis of digitally recorded data is briefly described. We discuss the difference between Leading Edge and Constant Fraction Discrimination triggering methods and we propose triggering on pulse maximum as an alternative. We observe that the starting point of charge integration gates has major impact on Figure of Merit values, therefore it is important to choose it carefully and report it with other Charge Comparison Method parameters to keep comparison between scintillators reliable. Figure of Merit has a limited usage, so Relative Height of Minimum is proposed as an additional indicator of neutron-gamma discrimination effectiveness in practical applications.
A current-biased kinetic inductance detector (CB-KID) is a novel superconducting detector to construct a neutron transmission imaging system. The characteristics of a superconducting neutron detector have been systematically studied to improve spatial resolution of our CB-KID neutron detector. In this study, we investigated the distribution of spatial resolutions under different operating conditions and examined the homogeneity of spatial resolutions in the detector in detail. We used a commercial standard Gd Siemens-star pattern as a conventional method to estimate the spatial resolution, and a lab-made 10B-dot array intended to examine detailed profiles on a distribution of spatial resolutions. We found that discrepancy in propagation velocities in the detector affected the uniformity of the spatial resolutions in neutron imaging. We analyzed the ellipsoidal line profiles along the circumferences of several different test circles in the Siemens-star image to find a distribution of spatial resolutions. Note that we succeeded in controlling the detector temperature precisely enough to realize stable propagation velocities of the signals in the detector to achieve the best spatial resolution with a delay-line CB-KID technique.
Rare event experiments, such as those targeting dark matter interactions and neutrinoless double beta (0$\nu\beta\beta$) decay, should be shielded from gamma-rays that originated in rock. This paper describes the simulation of gamma-ray transport through the water shielding and assessment of the thickness needed to suppress the background from rock down to a negligible level. This study focuses on a next-generation xenon observatory with a wide range of measurements including the search for Weakly Interacting Massive Particles (WIMPs) and 0$\nu\beta\beta$ decay of $^{136}$Xe. Our findings indicate that the gamma-ray background is unlikely to persist through analysis cuts in the WIMP energy range (0 - 20 keV) after 3.5 m of water, complemented by 0.5 m of liquid scintillator. For 0$\nu\beta\beta$ decay, a background below 1 event in 10 years of running can be achieved with a fiducial mass of 39.3 tonnes. Furthermore, for typical radioactivity levels of 1 Bq kg$^{-1}$ of $^{232}$Th and $^{238}$U we have studied the effect of reducing the water shielding by 1 m, resulting in a reduced fiducial mass of 19.1 tonnes for 0$\nu\beta\beta$ decay and still a negligible background for WIMP search. The paper also presents the measurements of radioactivity in rock in the Boulby mine, which hosted several dark matter experiments in the past and is also a potential site for a future dual-phase xenon experiment. The measurements are used to normalise simulation results and assess the required shielding at Boulby.
The GanESS experiment will exploit the high-pressure noble gas time projection chamber technology to detect coherent elastic neutrino-nucleus scattering (CE$\nu$NS) at the European Spallation Source (ESS). The detector, able to operate at pressures up to 50 bar with different noble gases (Xe, Ar and Kr), will employ electroluminescence to amplify the ionization signal with the objective of reaching a threshold as low as 1-2 e$^-$, equivalent to $<$ 100 eV$_{\text{ee}}$. The Gaseous Prototype (GaP) has been built to characterize the technique at the few-keV energy regime and to understand various aspects related to the technology. Concretely, it will be used to measure the quenching factor of the different mediums as well as to characterize the electroluminescence yield and detection threshold under different operational conditions. The present paper describes the Gaseous Prototype and its first results operating with gaseous argon at moderate pressures (up to 10 bar). A potential detection threshold lower than 2.9 keV has been observed following operation with a $^{55}$Fe calibration source.
Enhanced-accuracy ion-range verification in real time shall enable a significant step forward in the use of therapeutic ion beams. Positron-emission tomography (PET) and prompt-gamma imaging (PGI) are two of the most promising and researched methodologies, both of them with their own advantages and challenges. Thus far, both of them have been explored for ion-range verification in an independent way. However, the simultaneous combination of PET and PGI within the same imaging framework may open-up the possibility to exploit more efficiently all radiative emissions excited in the tissue by the ion beam. Here we report on the first pre-clinical implementation of an hybrid PET-PGI imaging system, hereby exploring its performance over several ion-beam species (H, He and C), energies (55 MeV to 275 MeV) and intensities (10$^7$-10$^9$ ions/spot), which are representative of clinical conditions. The measurements were carried out using the pencil-beam scanning technique at the synchrotron accelerator of the Heavy Ion Therapy centre in Heidelberg utilizing an array of four Compton cameras in a twofold front-to-front configuration. The results demonstrate that the hybrid PET-PGI technique can be well suited for relatively low energies (55-155 MeV) and beams of protons. On the other hand, for heavier beams of helium and carbon ions at higher energies (155-275 MeV), range monitoring becomes more challenging owing to large backgrounds from additional nuclear processes. The experimental results are well understood on the basis of realistic Monte Carlo (MC) calculations, which show a satisfactory agreement with the measured data. This work can guide further upgrades of the hybrid PET-PGI system towards a clinical implementation of this innovative technique.
First of its kind, the barrel section of the MIP Timing Detector is a large area timing detector based on LYSO:Ce crystals and SiPMs which are required to operate in an unprecedentedly harsh radiation environment (up to an integrated fluence of $2\times10^{14}$ 1 MeV $n_{eq}/cm^2$). It is designed as a key element of the upgrade of the existing CMS detector to provide a time resolution for minimum ionizing particles in the range between 30-60 ps throughout the entire operation at the High Luminosity LHC. A thorough optimization of its components has led to the final detector module layout which exploits 25 $\rm \mu m$ cell size SiPMs and 3.75 mm thick crystals. This design achieved the target performance in a series of test beam campaigns. In this paper we present test beam results which demonstrate the desired performance of detector modules in terms of radiation tolerance, time resolution and response uniformity.
The Casimir effect and superconductivity are foundational quantum phenomena whose interaction remains an open question in physics. How Casimir forces behave across a superconducting transition remains unresolved, owing to the experimental difficulty of achieving alignment, cryogenic environments, and isolating small changes from competing effects. This question carries implications for electron physics, quantum gravity, and high-temperature superconductivity. Here we demonstrate an on-chip superconducting platform that overcomes these challenges, achieving one of the most parallel Casimir configurations to date. Our microchip-based cavities achieve unprecedented area-to-separation ratio between plates, exceeding previous Casimir experiments by orders of magnitude and generating the strongest Casimir forces yet between compliant surfaces. Scanning tunneling microscopy (STM) is used for the first time to directly detect the resonant motion of a suspended membrane, with subatomic precision in both lateral positioning and displacement. Such precision measurements across a superconducting transition allow for the suppression of all van der Waals, electrostatic, and thermal effects. Preliminary measurements suggest superconductivity-dependent shifts in the Casimir force, motivating further investigation and comparison with theories. By uniting extreme parallelism, nanomechanics, and STM readout, our platform opens a new experimental frontier at the intersection of Casimir physics and superconductivity.
We propose a high-precision, fast, robust and cost-effective muon detector concept for an FCC-ee experiment. This design combines precision drift tubes with fast plastic scintillator strips to enable both spatial and timing measurements. The drift tubes deliver two-dimensional position measurements perpendicular to the tubes with a resolution around 100~$\mu$m. Meanwhile, the scintillator strips, read out with the wavelength-shifting fibers and silicon photomultipliers, provide fast timing information with a precision of 200~ps or better and measure the third coordinate along the tubes with a resolution of about 1~mm.
The HYpernuclei-Decay at R3B Apparatus (HYDRA) tracker is a novel time projection chamber combined with a plastic scintillator wall for timing and trigger purposes. This detector is a low radiation length tracker dedicated to measuring pions from the weak decay of light hypernuclei produced from ion-ion collisions at few GeV/nucleon in the magnetic field of the large-acceptance dipole magnet GLAD at the Reactions with Relativistic Radioactive Beams (R3B) experiment at GSI-FAIR. In this paper, we describe the design of the detector and provide the results of its first characterizations.
This paper presents a photothermal infrared (IR) spectroscopy technique based on a nanoelectromechanical system, which is coupled to a commercial Fourier transform infrared spectrometer (NEMS--FTIR) as a promising solution for the chemical characterization and quantification of nanoplastics. Polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) nanoparticles with nominal diameters of 100, 54, and 262~nm, respectively, were analyzed by NEMS--FTIR with limits of detection (LoD) of 353~pg for PS, 102~pg for PP, and 355~pg for PVC. The PS mass deposited on the NEMS chips was estimated from the measured absorptance values and the attenuation coefficient of PS. The wide spectral range of the FTIR allowed the identification of individual polymer nanoparticles from a mixture. The potential of NEMS--FTIR for the analysis of real--world samples was evaluated by confirming the presence of polyamide (PA) particles released from commercial tea bags during brewing. Accelerated aging of the tea bags under elevated temperature and UV radiation showed continuous release of PA particles over time.
In this paper, we present an investigation into the scintillation properties and pulse shape discrimination (PSD) performance of the new BSO-406, which is a blend of 40% organic glass scintillator and 60% polystyrene. We tested a cylindrical sample with dimensions of 2x2 inches. The study includes measurements of neutron-gamma discrimination capability, emission spectra, photoelectron yield, and the analysis of light pulse shapes originating from events related to gamma-rays and fast neutrons. The results were compared to data previously recorded using a pure Organic Glass Scintillator (BSO-100), an EJ-309 liquid scintillator, and EJ-276 and M600 polyurethane-based plastic scintillators.