Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
The rapid proliferation of modified images on social networks that are driven by widely accessible editing tools demands robust forensic tools for digital governance. Image provenance analysis, which filters various query image variants and constructs a directed graph to trace their phylogeny history, has emerged as a critical solution. However, existing methods face two fundamental limitations: First, accuracy issues arise from overlooking heavily modified images due to low similarity while failing to exclude unrelated images and determine modification directions under diverse modification scenarios. Second, scalability bottlenecks stem from pairwise image analysis incurs quadratic complexity, hindering application in large-scale scenarios. This paper presents a scalable end-to-end pipeline for image provenance analysis that achieves high precision with linear complexity. This improves filtering effectiveness through modification relationship tracing, which enables the comprehensive discovery of image variants regardless of their visual similarity to the query. In addition, the proposed pipeline integrates local features matching and compression artifact capturing, enhancing robustness against diverse modifications and enabling accurate analysis of images' relationships. This allows the generation of a directed provenance graph that accurately characterizes the image's phylogeny history. Furthermore, by optimizing similarity calculations and eliminating redundant pairwise analysis during graph construction, the pipeline achieves a linear time complexity, ensuring its scalability for large-scale scenarios. Experiments demonstrate pipeline's superior performance, achieving a 16.7-56.1% accuracy improvement. Notably, it exhibits significant scalability with an average 3.0-second response time on 10 million scale images, which is far shorter than the SOTA approach's 12-minute duration.
AI-generated content (AIGC) enables efficient visual creation but raises copyright and authenticity risks. As a common technique for integrity verification and source tracing, digital image watermarking is regarded as a potential solution to above issues. Among these, watermarking methods capable of preserving the generation quality are receiving increased attention. However, the proliferation and high performance of generative image editing applications have elevated the risks of malicious tampering, creating new demands. 1) The tamper robustness of current lossless visual quality watermarks remains constrained by the modification-sensitive diffusion inversion process, necessitating enhanced robustness. 2) The improved tampering quality and rapid iteration cycles render passive tampering detection methods inadequate, making proactive tampering localization capability a desired feature for watermarks. To address these requirements, this paper proposes a Tamper-Aware Generative image WaterMarking method named TAG-WM. The proposed method comprises four key modules: a dual-mark joint sampling (DMJS) algorithm for embedding copyright and localization watermarks into the latent space while preserving generative quality, the watermark latent reconstruction (WLR) utilizing reversed DMJS, a dense variation region detector (DVRD) leveraging diffusion inversion sensitivity to identify tampered areas via statistical deviation analysis, and the tamper-aware decoding (TAD) guided by localization results. The experimental results indicate that TAG-WM achieves SOTA tampering robustness and tampering localization capability with distortions while maintaining lossless generation quality and a considerable capacity of 256 bits.
Diffusion-model-based image super-resolution techniques often face a trade-off between realistic image generation and computational efficiency. This issue is exacerbated when inference times by decreasing sampling steps, resulting in less realistic and hazy images. To overcome this challenge, we introduce a novel diffusion model named PixelBoost that underscores the significance of embracing the stochastic nature of Brownian motion in advancing image super-resolution, resulting in a high degree of realism, particularly focusing on texture and edge definitions. By integrating controlled stochasticity into the training regimen, our proposed model avoids convergence to local optima, effectively capturing and reproducing the inherent uncertainty of image textures and patterns. Our proposed model demonstrates superior objective results in terms of learned perceptual image patch similarity (LPIPS), lightness order error (LOE), peak signal-to-noise ratio(PSNR), structural similarity index measure (SSIM), as well as visual quality. To determine the edge enhancement, we evaluated the gradient magnitude and pixel value, and our proposed model exhibited a better edge reconstruction capability. Additionally, our model demonstrates adaptive learning capabilities by effectively adjusting to Brownian noise patterns and introduces a sigmoidal noise sequencing method that simplifies training, resulting in faster inference speeds.
Recent advances in optical flow estimation have prioritized accuracy at the cost of growing GPU memory consumption, particularly for high-resolution (FullHD) inputs. We introduce MEMFOF, a memory-efficient multi-frame optical flow method that identifies a favorable trade-off between multi-frame estimation and GPU memory usage. Notably, MEMFOF requires only 2.09 GB of GPU memory at runtime for 1080p inputs, and 28.5 GB during training, which uniquely positions our method to be trained at native 1080p without the need for cropping or downsampling. We systematically revisit design choices from RAFT-like architectures, integrating reduced correlation volumes and high-resolution training protocols alongside multi-frame estimation, to achieve state-of-the-art performance across multiple benchmarks while substantially reducing memory overhead. Our method outperforms more resource-intensive alternatives in both accuracy and runtime efficiency, validating its robustness for flow estimation at high resolutions. At the time of submission, our method ranks first on the Spring benchmark with a 1-pixel (1px) outlier rate of 3.289, leads Sintel (clean) with an endpoint error (EPE) of 0.963, and achieves the best Fl-all error on KITTI-2015 at 2.94%. The code is available at https://github.com/msu-video-group/memfof.
Text watermarking schemes have gained considerable attention in recent years, yet still face critical challenges in achieving simultaneous robustness, generalizability, and imperceptibility. This paper introduces a new embedding paradigm,termed CORE, which comprises several consecutively aligned black pixel segments. Its key innovation lies in its inherent noise resistance during transmission and broad applicability across languages and fonts. Based on the CORE, we present a text watermarking framework named CoreMark. Specifically, CoreMark first dynamically extracts COREs from characters. Then, the characters with stronger robustness are selected according to the lengths of COREs. By modifying the thickness of the CORE, the hidden data is embedded into the selected characters without causing significant visual distortions. Moreover, a general plug-and-play embedding strength modulator is proposed, which can adaptively enhance the robustness for small font sizes by adjusting the embedding strength according to the font size. Experimental evaluation indicates that CoreMark demonstrates outstanding generalizability across multiple languages and fonts. Compared to existing methods, CoreMark achieves significant improvements in resisting screenshot, print-scan, and print camera attacks, while maintaining satisfactory imperceptibility.
We address the task of zero-shot fine-grained video classification, where no video examples or temporal annotations are available for unseen action classes. While contrastive vision-language models such as SigLIP demonstrate strong open-set recognition via mean-pooled image-text similarity, they fail to capture the temporal structure critical for distinguishing fine-grained activities. We introduce ActAlign, a zero-shot framework that formulates video classification as sequence alignment. For each class, a large language model generates an ordered sub-action sequence, which is aligned with video frames using Dynamic Time Warping (DTW) in a shared embedding space. Without any video-text supervision or fine-tuning, ActAlign achieves 30.5% accuracy on the extremely challenging ActionAtlas benchmark, where human accuracy is only 61.6%. ActAlign outperforms billion-parameter video-language models while using approximately 8x less parameters. These results demonstrate that structured language priors, combined with classical alignment techniques, offer a scalable and general approach to unlocking the open-set recognition potential of vision-language models for fine-grained video understanding.
Volumetric medical imaging technologies produce detailed 3D representations of anatomical structures. However, effective medical data visualization and exploration pose significant challenges, especially for individuals with limited medical expertise. We introduce a novel XR-based system with two key innovations: (1) a coordinated visualization module integrating Multi-layered Multi-planar Reconstruction with 3D mesh models and (2) a multimodal interaction framework combining hand gestures with LLM-enabled voice commands. We conduct preliminary evaluations, including a 15-participant user study and expert interviews, to demonstrate the system's abilities to enhance spatial understanding and reduce cognitive load. Experimental results show notable improvements in task completion times, usability metrics, and interaction effectiveness enhanced by LLM-driven voice control. While identifying areas for future refinement, our findings highlight the potential of this immersive visualization system to advance medical training and clinical practice. Our demo application and supplemental materials are available for download at: https://osf.io/bpjq5/.
Efficient model distribution is becoming increasingly critical in bandwidth-constrained environments. In this paper, we propose a simple yet effective approach called Progressive Precision Update (P$^2$U) to address this problem. Instead of transmitting the original high-precision model, P$^2$U transmits a lower-bit precision model, coupled with a model update representing the difference between the original high-precision model and the transmitted low precision version. With extensive experiments on various model architectures, ranging from small models ($1 - 6$ million parameters) to a large model (more than $100$ million parameters) and using three different data sets, e.g., chest X-Ray, PASCAL-VOC, and CIFAR-100, we demonstrate that P$^2$U consistently achieves better tradeoff between accuracy, bandwidth usage and latency. Moreover, we show that when bandwidth or startup time is the priority, aggressive quantization (e.g., 4-bit) can be used without severely compromising performance. These results establish P$^2$U as an effective and practical solution for scalable and efficient model distribution in low-resource settings, including federated learning, edge computing, and IoT deployments. Given that P$^2$U complements existing compression techniques and can be implemented alongside any compression method, e.g., sparsification, quantization, pruning, etc., the potential for improvement is even greater.
This paper reports IEEE International Conference on Multimedia \& Expo (ICME) 2025 Grand Challenge on Generalizable HDR and SDR Video Quality Measurement. With the rapid development of video technology, especially High Dynamic Range (HDR) and Standard Dynamic Range (SDR) contents, the need for robust and generalizable Video Quality Assessment (VQA) methods has become increasingly demanded. Existing VQA models often struggle to deliver consistent performance across varying dynamic ranges, distortion types, and diverse content. This challenge was established to benchmark and promote VQA approaches capable of jointly handling HDR and SDR content. In the final evaluation phase, five teams submitted seven models along with technical reports to the Full Reference (FR) and No Reference (NR) tracks. Among them, four methods outperformed VMAF baseline, while the top-performing model achieved state-of-the-art performance, setting a new benchmark for generalizable video quality assessment.
In this paper, we present a neural network approach for synchronizing audio recordings of human piano performances with their corresponding loosely aligned MIDI files. The task is addressed using a Convolutional Recurrent Neural Network (CRNN) architecture, which effectively captures spectral and temporal features by processing an unaligned piano roll and a spectrogram as inputs to estimate the aligned piano roll. To train the network, we create a dataset of piano pieces with augmented MIDI files that simulate common human timing errors. The proposed model achieves up to 20% higher alignment accuracy than the industry-standard Dynamic Time Warping (DTW) method across various tolerance windows. Furthermore, integrating DTW with the CRNN yields additional improvements, offering enhanced robustness and consistency. These findings demonstrate the potential of neural networks in advancing state-of-the-art MIDI-to-audio alignment.
With the increasing multimodal knowledge privatization requirements, multimodal knowledge graphs in different institutes are usually decentralized, lacking of effective collaboration system with both stronger reasoning ability and transmission safety guarantees. In this paper, we propose the Federated Multimodal Knowledge Graph Completion (FedMKGC) task, aiming at training over federated MKGs for better predicting the missing links in clients without sharing sensitive knowledge. We propose a framework named MMFeD3-HidE for addressing multimodal uncertain unavailability and multimodal client heterogeneity challenges of FedMKGC. (1) Inside the clients, our proposed Hyper-modal Imputation Diffusion Embedding model (HidE) recovers the complete multimodal distributions from incomplete entity embeddings constrained by available modalities. (2) Among clients, our proposed Multimodal FeDerated Dual Distillation (MMFeD3) transfers knowledge mutually between clients and the server with logit and feature distillation to improve both global convergence and semantic consistency. We propose a FedMKGC benchmark for a comprehensive evaluation, consisting of a general FedMKGC backbone named MMFedE, datasets with heterogeneous multimodal information, and three groups of constructed baselines. Experiments conducted on our benchmark validate the effectiveness, semantic consistency, and convergence robustness of MMFeD3-HidE.
Text-driven human motion generation has recently attracted considerable attention, allowing models to generate human motions based on textual descriptions. However, current methods neglect the influence of human attributes (such as age, gender, weight, and height) which are key factors shaping human motion patterns. This work represents a pilot exploration for bridging this gap. We conceptualize each motion as comprising both attribute information and action semantics, where textual descriptions align exclusively with action semantics. To achieve this, a new framework inspired by Structural Causal Models is proposed to decouple action semantics from human attributes, enabling text-to-semantics prediction and attribute-controlled generation. The resulting model is capable of generating realistic, attribute-aware motion aligned with the user's text and attribute inputs. For evaluation, we introduce HumanAttr, a comprehensive dataset containing attribute annotations for text-motion pairs, setting the first benchmark for attribute-aware text-to-motion generation. Extensive experiments on the new dataset validate our model's effectiveness.
Multi-sensor fusion plays a critical role in enhancing perception for autonomous driving, overcoming individual sensor limitations, and enabling comprehensive environmental understanding. This paper first formalizes multi-sensor fusion strategies into data-level, feature-level, and decision-level categories and then provides a systematic review of deep learning-based methods corresponding to each strategy. We present key multi-modal datasets and discuss their applicability in addressing real-world challenges, particularly in adverse weather conditions and complex urban environments. Additionally, we explore emerging trends, including the integration of Vision-Language Models (VLMs), Large Language Models (LLMs), and the role of sensor fusion in end-to-end autonomous driving, highlighting its potential to enhance system adaptability and robustness. Our work offers valuable insights into current methods and future directions for multi-sensor fusion in autonomous driving.
The Yellow River is China's mother river and a cradle of human civilization. The ancient Yellow River culture is, moreover, an indispensable part of human art history. To conserve and inherit the ancient Yellow River culture, we designed RiverEcho, a real-time interactive system that responds to voice queries using a large language model and a cultural knowledge dataset, delivering explanations through a talking-head digital human. Specifically, we built a knowledge database focused on the ancient Yellow River culture, including the collection of historical texts and the processing pipeline. Experimental results demonstrate that leveraging Retrieval-Augmented Generation (RAG) on the proposed dataset enhances the response quality of the Large Language Model(LLM), enabling the system to generate more professional and informative responses. Our work not only diversifies the means of promoting Yellow River culture but also provides users with deeper cultural insights.
In this paper, we present LLaVA-Scissor, a training-free token compression strategy designed for video multimodal large language models. Previous methods mostly attempt to compress tokens based on attention scores, but fail to effectively capture all semantic regions and often lead to token redundancy. Differently, we propose to leverage the Semantic Connected Components (SCC) approach that assigns tokens to distinct semantic regions within the token set, ensuring comprehensive semantic coverage. The outcome is a two-step spatio-temporal token compression strategy that utilizes SCC in both spatial and temporal domains. This strategy can effectively compress tokens by representing the entire video with a set of non-overlapping semantic tokens. We conduct extensive evaluations of the token compression capabilities of LLaVA-Scissor across diverse video understanding benchmarks, including video question answering, long video understanding, and comprehensive multi-choices benchmarks. Experimental results show that the proposed LLaVA-Scissor outperforms other token compression methods, achieving superior performance in various video understanding benchmarks, particularly at low token retention ratios. Project page: https://github.com/HumanMLLM/LLaVA-Scissor.
RGB-IR(RGB-Infrared) image pairs are frequently applied simultaneously in various applications like intelligent surveillance. However, as the number of modalities increases, the required data storage and transmission costs also double. Therefore, efficient RGB-IR data compression is essential. This work proposes a joint compression framework for RGB-IR image pair. Specifically, to fully utilize cross-modality prior information for accurate context probability modeling within and between modalities, we propose a Channel-wise Cross-modality Entropy Model (CCEM). Among CCEM, a Low-frequency Context Extraction Block (LCEB) and a Low-frequency Context Fusion Block (LCFB) are designed for extracting and aggregating the global low-frequency information from both modalities, which assist the model in predicting entropy parameters more accurately. Experimental results demonstrate that our approach outperforms existing RGB-IR image pair and single-modality compression methods on LLVIP and KAIST datasets. For instance, the proposed framework achieves a 23.1% bit rate saving on LLVIP dataset compared to the state-of-the-art RGB-IR image codec presented at CVPR 2022.
We train models to Predict Ego-centric Video from human Actions (PEVA), given the past video and an action represented by the relative 3D body pose. By conditioning on kinematic pose trajectories, structured by the joint hierarchy of the body, our model learns to simulate how physical human actions shape the environment from a first-person point of view. We train an auto-regressive conditional diffusion transformer on Nymeria, a large-scale dataset of real-world egocentric video and body pose capture. We further design a hierarchical evaluation protocol with increasingly challenging tasks, enabling a comprehensive analysis of the model's embodied prediction and control abilities. Our work represents an initial attempt to tackle the challenges of modeling complex real-world environments and embodied agent behaviors with video prediction from the perspective of a human.
Fine-tuning large-scale music generation models, such as MusicGen and Mustango, is a computationally expensive process, often requiring updates to billions of parameters and, therefore, significant hardware resources. Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly adapter-based methods, have emerged as a promising alternative, enabling adaptation with minimal trainable parameters while preserving model performance. However, the design choices for adapters, including their architecture, placement, and size, are numerous, and it is unclear which of these combinations would produce optimal adapters and why, for a given case of low-resource music genre. In this paper, we attempt to answer this question by studying various adapter configurations for two AI music models, MusicGen and Mustango, on two genres: Hindustani Classical and Turkish Makam music. Our findings reveal distinct trade-offs: convolution-based adapters excel in capturing fine-grained local musical details such as ornamentations and short melodic phrases, while transformer-based adapters better preserve long-range dependencies crucial for structured improvisation. Additionally, we analyze computational resource requirements across different adapter scales, demonstrating how mid-sized adapters (40M parameters) achieve an optimal balance between expressivity and quality. Furthermore, we find that Mustango, a diffusion-based model, generates more diverse outputs with better adherence to the description in the input prompt while lacking in providing stability in notes, rhythm alignment, and aesthetics. Also, it is computationally intensive and requires significantly more time to train. In contrast, autoregressive models like MusicGen offer faster training and are more efficient, and can produce better quality output in comparison, but have slightly higher redundancy in their generations.