Twitter/XGitHub

CyberSec Research

Browse, search and filter the latest cybersecurity research papers from arXiv

Filters

Cryptography and Security1245
Computers and Society654
Networking and Internet Architecture876
Distributed Computing432
Software Engineering789
Artificial Intelligence1532
Machine Learning921
Hardware Security342
Software Security578
Network Security456
AI Security324
ML Security428
Cloud Security219
IoT Security187
Malware Analysis296
Cryptography413
Privacy329
Authentication247
Vulnerability Analysis385

Publication Year

Results (7832)

May 8, 2025
Andrea Asperti, Leonardo Dessì, Maria Ch...

CLIP has emerged as a powerful multimodal model capable of connecting images and text through joint embeddings, but to what extent does it "see" the same way humans do - especially when interpreting artworks? In this paper, we investigate CLIP's ability to extract high-level semantic and stylistic information from paintings, including both human-created and AI-generated imagery. We evaluate its perception across multiple dimensions: content, scene understanding, artistic style, historical period, and the presence of visual deformations or artifacts. By designing targeted probing tasks and comparing CLIP's responses to human annotations and expert benchmarks, we explore its alignment with human perceptual and contextual understanding. Our findings reveal both strengths and limitations in CLIP's visual representations, particularly in relation to aesthetic cues and artistic intent. We further discuss the implications of these insights for using CLIP as a guidance mechanism during generative processes, such as style transfer or prompt-based image synthesis. Our work highlights the need for deeper interpretability in multimodal systems, especially when applied to creative domains where nuance and subjectivity play a central role.

Visible watermark removal is challenging due to its inherent complexities and the noise carried within images. Existing methods primarily rely on supervised learning approaches that require paired datasets of watermarked and watermark-free images, which are often impractical to obtain in real-world scenarios. To address this challenge, we propose SSH-Net, a Self-Supervised and Hybrid Network specifically designed for noisy image watermark removal. SSH-Net synthesizes reference watermark-free images using the watermark distribution in a self-supervised manner and adopts a dual-network design to address the task. The upper network, focused on the simpler task of noise removal, employs a lightweight CNN-based architecture, while the lower network, designed to handle the more complex task of simultaneously removing watermarks and noise, incorporates Transformer blocks to model long-range dependencies and capture intricate image features. To enhance the model's effectiveness, a shared CNN-based feature encoder is introduced before dual networks to extract common features that both networks can leverage. Our code will be available at https://github.com/wenyang001/SSH-Net.

Conventional multimodal recommender systems predominantly leverage Bayesian Personalized Ranking (BPR) optimization to learn item representations by amalgamating item identity (ID) embeddings with multimodal features. Nevertheless, our empirical and theoretical findings unequivocally demonstrate a pronounced optimization gradient bias in favor of acquiring representations from multimodal features over item ID embeddings. As a consequence, item ID embeddings frequently exhibit suboptimal characteristics despite the convergence of multimodal feature parameters. Given the rich informational content inherent in multimodal features, in this paper, we propose a novel model (i.e., LIRDRec) that learns item representations directly from these features to augment recommendation performance. Recognizing that features derived from each modality may capture disparate yet correlated aspects of items, we propose a multimodal transformation mechanism, integrated with modality-specific encoders, to effectively fuse features from all modalities. Moreover, to differentiate the influence of diverse modality types, we devise a progressive weight copying fusion module within LIRDRec. This module incrementally learns the weight assigned to each modality in synthesizing the final user or item representations. Finally, we utilize the powerful visual understanding of Multimodal Large Language Models (MLLMs) to convert the item images into texts and extract semantics embeddings upon the texts via LLMs. Empirical evaluations conducted on five real-world datasets validate the superiority of our approach relative to competing baselines. It is worth noting the proposed model, equipped with embeddings extracted from MLLMs and LLMs, can further improve the recommendation accuracy of NDCG@20 by an average of 4.21% compared to the original embeddings.

This research introduces an innovative AI-driven multi-agent framework specifically designed for creating immersive audiobooks. Leveraging neural text-to-speech synthesis with FastSpeech 2 and VALL-E for expressive narration and character-specific voices, the framework employs advanced language models to automatically interpret textual narratives and generate realistic spatial audio effects. These sound effects are dynamically synchronized with the storyline through sophisticated temporal integration methods, including Dynamic Time Warping (DTW) and recurrent neural networks (RNNs). Diffusion-based generative models combined with higher-order ambisonics (HOA) and scattering delay networks (SDN) enable highly realistic 3D soundscapes, substantially enhancing listener immersion and narrative realism. This technology significantly advances audiobook applications, providing richer experiences for educational content, storytelling platforms, and accessibility solutions for visually impaired audiences. Future work will address personalization, ethical management of synthesized voices, and integration with multi-sensory platforms.

Multimodal large language models (MLLMs) have advanced perception across text, vision, and audio, yet they often struggle with structured cross-modal reasoning, particularly when integrating audio and visual signals. We introduce EchoInk-R1, a reinforcement learning framework that enhances such reasoning in MLLMs. Built upon the Qwen2.5-Omni-7B foundation and optimized with Group Relative Policy Optimization (GRPO), EchoInk-R1 tackles multiple-choice question answering over synchronized audio-image pairs. To enable this, we curate AVQA-R1-6K, a dataset pairing such audio-image inputs with multiple-choice questions derived from OmniInstruct-v1. EchoInk-R1-7B achieves 85.77% accuracy on the validation set, outperforming the base model, which scores 80.53%, using only 562 reinforcement learning steps. Beyond accuracy, EchoInk-R1 demonstrates reflective reasoning by revisiting initial interpretations and refining responses when facing ambiguous multimodal inputs. These results suggest that lightweight reinforcement learning fine-tuning enhances cross-modal reasoning in MLLMs. EchoInk-R1 is the first framework to unify audio, visual, and textual modalities for general open-world reasoning via reinforcement learning. Code and data are publicly released to facilitate further research.

May 7, 2025
Jessie Richter-Powell, Antonio Torralba,...

We introduce Audio-SDS, a generalization of Score Distillation Sampling (SDS) to text-conditioned audio diffusion models. While SDS was initially designed for text-to-3D generation using image diffusion, its core idea of distilling a powerful generative prior into a separate parametric representation extends to the audio domain. Leveraging a single pretrained model, Audio-SDS enables a broad range of tasks without requiring specialized datasets. In particular, we demonstrate how Audio-SDS can guide physically informed impact sound simulations, calibrate FM-synthesis parameters, and perform prompt-specified source separation. Our findings illustrate the versatility of distillation-based methods across modalities and establish a robust foundation for future work using generative priors in audio tasks.

The visually impaired population, especially the severely visually impaired, is currently large in scale, and daily activities pose significant challenges for them. Although many studies use large language and vision-language models to assist the blind, most focus on static content and fail to meet real-time perception needs in dynamic and complex environments, such as daily activities. To provide them with more effective intelligent assistance, it is imperative to incorporate advanced visual understanding technologies. Although real-time vision and speech interaction VideoLLMs demonstrate strong real-time visual understanding, no prior work has systematically evaluated their effectiveness in assisting visually impaired individuals. In this work, we conduct the first such evaluation. First, we construct a benchmark dataset (VisAssistDaily), covering three categories of assistive tasks for visually impaired individuals: Basic Skills, Home Life Tasks, and Social Life Tasks. The results show that GPT-4o achieves the highest task success rate. Next, we conduct a user study to evaluate the models in both closed-world and open-world scenarios, further exploring the practical challenges of applying VideoLLMs in assistive contexts. One key issue we identify is the difficulty current models face in perceiving potential hazards in dynamic environments. To address this, we build an environment-awareness dataset named SafeVid and introduce a polling mechanism that enables the model to proactively detect environmental risks. We hope this work provides valuable insights and inspiration for future research in this field.

May 7, 2025
Mohammad Waquas Usmani, Susmit Shannigra...

Delivering high-quality, secure 360{\deg} video content introduces unique challenges, primarily due to the high bitrates and interactive demands of immersive media. Traditional HTTPS-based methods, although widely used, face limitations in computational efficiency and scalability when securing these high-resolution streams. To address these issues, this paper proposes a novel framework integrating Attribute-Based Encryption (ABE) with selective encryption techniques tailored specifically for tiled 360{\deg} video streaming. Our approach employs selective encryption of frames at varying levels to reduce computational overhead while ensuring robust protection against unauthorized access. Moreover, we explore viewport-adaptive encryption, dynamically encrypting more frames within tiles occupying larger portions of the viewer's field of view. This targeted method significantly enhances security in critical viewing areas without unnecessary overhead in peripheral regions. We deploy and evaluate our proposed approach using the CloudLab testbed, comparing its performance against traditional HTTPS streaming. Experimental results demonstrate that our ABE-based model achieves reduced computational load on intermediate caches, improves cache hit rates, and maintains comparable visual quality to HTTPS, as assessed by Video Multimethod Assessment Fusion (VMAF).

Automatic music transcription (AMT) is the problem of analyzing an audio recording of a musical piece and detecting notes that are being played. AMT is a challenging problem, particularly when it comes to polyphonic music. The goal of AMT is to produce a score representation of a music piece, by analyzing a sound signal containing multiple notes played simultaneously. In this work, we design a processing pipeline that can transform classical piano audio files in .wav format into a music score representation. The features from the audio signals are extracted using the constant-Q transform, and the resulting coefficients are used as an input to the convolutional neural network (CNN) model.

We propose HDiffTG, a novel 3D Human Pose Estimation (3DHPE) method that integrates Transformer, Graph Convolutional Network (GCN), and diffusion model into a unified framework. HDiffTG leverages the strengths of these techniques to significantly improve pose estimation accuracy and robustness while maintaining a lightweight design. The Transformer captures global spatiotemporal dependencies, the GCN models local skeletal structures, and the diffusion model provides step-by-step optimization for fine-tuning, achieving a complementary balance between global and local features. This integration enhances the model's ability to handle pose estimation under occlusions and in complex scenarios. Furthermore, we introduce lightweight optimizations to the integrated model and refine the objective function design to reduce computational overhead without compromising performance. Evaluation results on the Human3.6M and MPI-INF-3DHP datasets demonstrate that HDiffTG achieves state-of-the-art (SOTA) performance on the MPI-INF-3DHP dataset while excelling in both accuracy and computational efficiency. Additionally, the model exhibits exceptional robustness in noisy and occluded environments. Source codes and models are available at https://github.com/CirceJie/HDiffTG

Image steganography is a technique that conceals secret information in a cover image to achieve covert communication. Recent research has demonstrated that Fixed Neural Network Steganography (FNNS) exhibits significant practical advantages, as it enables stable and efficient steganographic embedding and extraction without requiring neural network training. However, the stego image generated by existing FNNS methods suffers from considerable distortion and exhibits poor robustness, severely reducing the security and practicality of steganography. To address the aforementioned issues, we propose a Robust Fixed Neural Network Steganography (RFNNS). In RFNNS, we introduce a texture-aware localization technique to add perturbations carrying secret image information to complex texture areas that are less perceptible to the human eye, thereby ensuring the quality of the stego image. To enhance robustness, a robust steganographic perturbation generation (RSPG) strategy is designed, which enables slight perturbations to be accurately decoded even after common image attacks. Subsequently, the generated robust perturbations are combined with the AI-generated cover image to produce the stego image. The receiver only needs to share the secret key and employ the same decoding network structure to accurately extract the secret image from the attacked stego image. Experimental results demonstrate that RFNNS achieves enhanced performance in terms of security, including imperceptibility and anti-steganalysis performance. Furthermore, RFNNS demonstrates superior robustness against common image attacks, such as JPEG compression, Gaussian noise, and contrast adjustment, across diverse embedding capacities, outperforming existing SOTA FNNS methods.

Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.

May 6, 2025
Shiyi Zhang, Junhao Zhuang, Zhaoyang Zha...

Action customization involves generating videos where the subject performs actions dictated by input control signals. Current methods use pose-guided or global motion customization but are limited by strict constraints on spatial structure, such as layout, skeleton, and viewpoint consistency, reducing adaptability across diverse subjects and scenarios. To overcome these limitations, we propose FlexiAct, which transfers actions from a reference video to an arbitrary target image. Unlike existing methods, FlexiAct allows for variations in layout, viewpoint, and skeletal structure between the subject of the reference video and the target image, while maintaining identity consistency. Achieving this requires precise action control, spatial structure adaptation, and consistency preservation. To this end, we introduce RefAdapter, a lightweight image-conditioned adapter that excels in spatial adaptation and consistency preservation, surpassing existing methods in balancing appearance consistency and structural flexibility. Additionally, based on our observations, the denoising process exhibits varying levels of attention to motion (low frequency) and appearance details (high frequency) at different timesteps. So we propose FAE (Frequency-aware Action Extraction), which, unlike existing methods that rely on separate spatial-temporal architectures, directly achieves action extraction during the denoising process. Experiments demonstrate that our method effectively transfers actions to subjects with diverse layouts, skeletons, and viewpoints. We release our code and model weights to support further research at https://shiyi-zh0408.github.io/projectpages/FlexiAct/

May 6, 2025
Y. B. Wang, S. Z. Zhou, J. F. Wu, T. Hu,...

Audio-driven human animation technology is widely used in human-computer interaction, and the emergence of diffusion models has further advanced its development. Currently, most methods rely on multi-stage generation and intermediate representations, resulting in long inference time and issues with generation quality in specific foreground regions and audio-motion consistency. These shortcomings are primarily due to the lack of localized fine-grained supervised guidance. To address above challenges, we propose PAHA, an end-to-end audio-driven upper-body human animation framework with diffusion model. We introduce two key methods: Parts-Aware Re-weighting (PAR) and Parts Consistency Enhancement (PCE). PAR dynamically adjusts regional training loss weights based on pose confidence scores, effectively improving visual quality. PCE constructs and trains diffusion-based regional audio-visual classifiers to improve the consistency of motion and co-speech audio. Afterwards, we design two novel inference guidance methods for the foregoing classifiers, Sequential Guidance (SG) and Differential Guidance (DG), to balance efficiency and quality respectively. Additionally, we build CNAS, the first public Chinese News Anchor Speech dataset, to advance research and validation in this field. Extensive experimental results and user studies demonstrate that PAHA significantly outperforms existing methods in audio-motion alignment and video-related evaluations. The codes and CNAS dataset will be released upon acceptance.

May 6, 2025
Lilian Marey, Charlotte Laclau, Bruno Sg...

The increasing availability of user data on music streaming platforms opens up new possibilities for analyzing music consumption. However, understanding the evolution of user preferences remains a complex challenge, particularly as their musical tastes change over time. This paper uses the dictionary learning paradigm to model user trajectories across different musical genres. We define a new framework that captures recurring patterns in genre trajectories, called pathlets, enabling the creation of comprehensible trajectory embeddings. We show that pathlet learning reveals relevant listening patterns that can be analyzed both qualitatively and quantitatively. This work improves our understanding of users' interactions with music and opens up avenues of research into user behavior and fostering diversity in recommender systems. A dataset of 2000 user histories tagged by genre over 17 months, supplied by Deezer (a leading music streaming company), is also released with the code.

May 6, 2025
Fei Zhao, Chengcui Zhang, Runlin Zhang, ...

Hallucinations in vision-language models (VLMs) hinder reliability and real-world applicability, usually stemming from distribution shifts between pretraining data and test samples. Existing solutions, such as retraining or fine-tuning on additional data, demand significant computational resources and labor-intensive data collection, while ensemble-based methods incur additional costs by introducing auxiliary VLMs. To address these challenges, we propose a novel test-time adaptation framework using reinforcement learning to mitigate hallucinations during inference without retraining or any auxiliary VLMs. By updating only the learnable parameters in the layer normalization of the language model (approximately 0.003% of the model parameters), our method reduces distribution shifts between test samples and pretraining samples. A CLIP-based hallucination evaluation model is proposed to provide dual rewards to VLMs. Experimental results demonstrate a 15.4% and 17.3% reduction in hallucination rates on LLaVA and InstructBLIP, respectively. Our approach outperforms state-of-the-art baselines with a 68.3% improvement in hallucination mitigation, demonstrating its effectiveness.

May 6, 2025
Manolis Mylonas, Evlampios Apostolidis, ...

In this work, we introduce the task of script-driven video summarization, which aims to produce a summary of the full-length video by selecting the parts that are most relevant to a user-provided script outlining the visual content of the desired summary. Following, we extend a recently-introduced large-scale dataset for generic video summarization (VideoXum) by producing natural language descriptions of the different human-annotated summaries that are available per video. In this way we make it compatible with the introduced task, since the available triplets of ``video, summary and summary description'' can be used for training a method that is able to produce different summaries for a given video, driven by the provided script about the content of each summary. Finally, we develop a new network architecture for script-driven video summarization (SD-VSum), that relies on the use of a cross-modal attention mechanism for aligning and fusing information from the visual and text modalities. Our experimental evaluations demonstrate the advanced performance of SD-VSum against state-of-the-art approaches for query-driven and generic (unimodal and multimodal) summarization from the literature, and document its capacity to produce video summaries that are adapted to each user's needs about their content.

We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.