Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
AI Video Chat emerges as a new paradigm for Real-time Communication (RTC), where one peer is not a human, but a Multimodal Large Language Model (MLLM). This makes interaction between humans and AI more intuitive, as if chatting face-to-face with a real person. However, this poses significant challenges to latency, because the MLLM inference takes up most of the response time, leaving very little time for video streaming. Due to network uncertainty and instability, transmission latency becomes a critical bottleneck preventing AI from being like a real person. To address this, we propose Artic, an AI-oriented Real-time Communication framework, exploring the network requirement shift from "humans watching video" to "AI understanding video". To reduce bitrate dramatically while maintaining MLLM accuracy, we propose Context-Aware Video Streaming that recognizes the importance of each video region for chat and allocates bitrate almost exclusively to chat-important regions. To avoid packet retransmission, we propose Loss-Resilient Adaptive Frame Rate that leverages previous frames to substitute for lost/delayed frames while avoiding bitrate waste. To evaluate the impact of video streaming quality on MLLM accuracy, we build the first benchmark, named Degraded Video Understanding Benchmark (DeViBench). Finally, we discuss some open questions and ongoing solutions for AI Video Chat.
Advancements in artificial intelligence (AI) have significantly enhanced the realism and interactivity of non-player characters (NPCs) in virtual reality (VR), creating more engaging and believable user experiences. This paper evaluates AI-driven NPCs within a VR interrogation simulator, focusing on their perceived realism, usability, and system performance. The simulator features two AI-powered NPCs, a suspect, and a partner, using GPT-4 Turbo to engage participants in a scenario to determine the suspect's guilt or innocence. A user study with 18 participants assessed the system using the System Usability Scale (SUS), Game Experience Questionnaire (GEQ), and a Virtual Agent Believability Questionnaire, alongside latency measurements for speech-to-text (STT), text-to-speech (TTS), OpenAI GPT-4 Turbo, and overall (cycle) latency. Results showed an average cycle latency of 7 seconds, influenced by the increasing conversational context. Believability scored 6.67 out of 10, with high ratings in behavior, social relationships, and intelligence but moderate scores in emotion and personality. The system achieved a SUS score of 79.44, indicating good usability. These findings demonstrate the potential of large language models to improve NPC realism and interaction in VR while highlighting challenges in reducing system latency and enhancing emotional depth. This research contributes to the development of more sophisticated AI-driven NPCs, revealing the need for performance optimization to achieve increasingly immersive virtual experiences.
Pansharpening refers to the process of integrating a high resolution panchromatic (PAN) image with a lower resolution multispectral (MS) image to generate a fused product, which is pivotal in remote sensing. Despite the effectiveness of CNNs in addressing this challenge, they are inherently constrained by the uniform application of convolutional kernels across all spatial positions, overlooking local content variations. To overcome this issue, we introduce RAPNet, a new architecture that leverages content-adaptive convolution. At its core, RAPNet employs the Receptive-field Adaptive Pansharpening Convolution (RAPConv), designed to produce spatially adaptive kernels responsive to local feature context, thereby enhancing the precision of spatial detail extraction. Additionally, the network integrates the Pansharpening Dynamic Feature Fusion (PAN-DFF) module, which incorporates an attention mechanism to achieve an optimal balance between spatial detail enhancement and spectral fidelity. Comprehensive evaluations on publicly available datasets confirm that RAPNet delivers superior performance compared to existing approaches, as demonstrated by both quantitative metrics and qualitative assessments. Ablation analyses further substantiate the effectiveness of the proposed adaptive components.
Retrieving relevant imagery from vast satellite archives is crucial for applications like disaster response and long-term climate monitoring. However, most text-to-image retrieval systems are limited to RGB data, failing to exploit the unique physical information captured by other sensors, such as the all-weather structural sensitivity of Synthetic Aperture Radar (SAR) or the spectral signatures in optical multispectral data. To bridge this gap, we introduce CrisisLandMark, a new large-scale corpus of over 647,000 Sentinel-1 SAR and Sentinel-2 multispectral images paired with structured textual annotations for land cover, land use, and crisis events harmonized from authoritative land cover systems (CORINE and Dynamic World) and crisis-specific sources. We then present CLOSP (Contrastive Language Optical SAR Pretraining), a novel framework that uses text as a bridge to align unpaired optical and SAR images into a unified embedding space. Our experiments show that CLOSP achieves a new state-of-the-art, improving retrieval nDGC by 54% over existing models. Additionally, we find that the unified training strategy overcomes the inherent difficulty of interpreting SAR imagery by transferring rich semantic knowledge from the optical domain with indirect interaction. Furthermore, GeoCLOSP, which integrates geographic coordinates into our framework, creates a powerful trade-off between generality and specificity: while the CLOSP excels at general semantic tasks, the GeoCLOSP becomes a specialized expert for retrieving location-dependent crisis events and rare geographic features. This work highlights that the integration of diverse sensor data and geographic context is essential for unlocking the full potential of remote sensing archives.
While recent video-to-audio (V2A) models can generate realistic background audio from visual input, they largely overlook speech, an essential part of many video soundtracks. This paper proposes a new task, video-to-soundtrack (V2ST) generation, which aims to jointly produce synchronized background audio and speech within a unified framework. To tackle V2ST, we introduce DualDub, a unified framework built on a multimodal language model that integrates a multimodal encoder, a cross-modal aligner, and dual decoding heads for simultaneous background audio and speech generation. Specifically, our proposed cross-modal aligner employs causal and non-causal attention mechanisms to improve synchronization and acoustic harmony. Besides, to handle data scarcity, we design a curriculum learning strategy that progressively builds the multimodal capability. Finally, we introduce DualBench, the first benchmark for V2ST evaluation with a carefully curated test set and comprehensive metrics. Experimental results demonstrate that DualDub achieves state-of-the-art performance, generating high-quality and well-synchronized soundtracks with both speech and background audio.
This demonstration paper presents $\mathbf{LayLens}$, a tool aimed to make deepfake understanding easier for users of all educational backgrounds. While prior works often rely on outputs containing technical jargon, LayLens bridges the gap between model reasoning and human understanding through a three-stage pipeline: (1) explainable deepfake detection using a state-of-the-art forgery localization model, (2) natural language simplification of technical explanations using a vision-language model, and (3) visual reconstruction of a plausible original image via guided image editing. The interface presents both technical and layperson-friendly explanations in addition to a side-by-side comparison of the uploaded and reconstructed images. A user study with 15 participants shows that simplified explanations significantly improve clarity and reduce cognitive load, with most users expressing increased confidence in identifying deepfakes. LayLens offers a step toward transparent, trustworthy, and user-centric deepfake forensics.
Dense audio-visual event localization (DAVE) aims to identify event categories and locate the temporal boundaries in untrimmed videos. Most studies only employ event-related semantic constraints on the final outputs, lacking cross-modal semantic bridging in intermediate layers. This causes modality semantic gap for further fusion, making it difficult to distinguish between event-related content and irrelevant background content. Moreover, they rarely consider the correlations between events, which limits the model to infer concurrent events among complex scenarios. In this paper, we incorporate multi-stage semantic guidance and multi-event relationship modeling, which respectively enable hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies, thereby better focusing on event-related information. Specifically, our eventaware semantic guided network (ESG-Net) includes a early semantics interaction (ESI) module and a mixture of dependency experts (MoDE) module. ESI applys multi-stage semantic guidance to explicitly constrain the model in learning semantic information through multi-modal early fusion and several classification loss functions, ensuring hierarchical understanding of event-related content. MoDE promotes the extraction of multi-event dependencies through multiple serial mixture of experts with adaptive weight allocation. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load. Our code will be released on https://github.com/uchiha99999/ESG-Net.
In recent years, the rampant spread of misinformation on social media has made accurate detection of multimodal fake news a critical research focus. However, previous research has not adequately understood the semantics of images, and models struggle to discern news authenticity with limited textual information. Meanwhile, treating all emotional types of news uniformly without tailored approaches further leads to performance degradation. Therefore, we propose a novel Knowledge Augmentation and Emotion Guidance Network (KEN). On the one hand, we effectively leverage LVLM's powerful semantic understanding and extensive world knowledge. For images, the generated captions provide a comprehensive understanding of image content and scenes, while for text, the retrieved evidence helps break the information silos caused by the closed and limited text and context. On the other hand, we consider inter-class differences between different emotional types of news through balanced learning, achieving fine-grained modeling of the relationship between emotional types and authenticity. Extensive experiments on two real-world datasets demonstrate the superiority of our KEN.
Related video recommendations commonly use collaborative filtering (CF) driven by co-engagement signals, often resulting in recommendations lacking semantic coherence and exhibiting strong popularity bias. This paper introduces a novel multi-objective retrieval framework, enhancing standard two-tower models to explicitly balance semantic relevance and user engagement. Our approach uniquely combines: (a) multi-task learning (MTL) to jointly optimize co-engagement and semantic relevance, explicitly prioritizing topical coherence; (b) fusion of multimodal content features (textual and visual embeddings) for richer semantic understanding; and (c) off-policy correction (OPC) via inverse propensity weighting to effectively mitigate popularity bias. Evaluation on industrial-scale data and a two-week live A/B test reveals our framework's efficacy. We observed significant improvements in semantic relevance (from 51% to 63% topic match rate), a reduction in popular item distribution (-13.8% popular video recommendations), and a +0.04% improvement in our topline user engagement metric. Our method successfully achieves better semantic coherence, balanced engagement, and practical scalability for real-world deployment.
Accurate sound propagation simulation is essential for delivering immersive experiences in virtual applications, yet industry methods for acoustic modeling often do not account for the full breadth of acoustic wave phenomena. This paper proposes a novel two-dimensional (2D) finite-difference time-domain (FDTD) framework that simulates sound propagation as a wave-based model in Unreal Engine, with an emphasis on capturing lower frequency wave phenomena, embedding occlusion, diffraction, reflection and interference in generated impulse responses. The process begins by discretizing the scene geometry into a 2D grid via a top-down projection from which obstacle masks and boundary conditions are derived. A Python-based FDTD solver injects a sine sweep at a source position, and virtual quadraphonic microphone arrays record pressure field responses at pre-defined listener positions. De-convolution of the pressure responses yields multi-channel impulse responses that retain spatial directionality which are then integrated into Unreal Engine's audio pipeline for dynamic playback. Benchmark tests confirm agreement with analytical expectations, and the paper outlines hybrid extensions aimed at commercial viability.
Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic ambiguities among similar instances. These ambiguities arise from subtle differences between soft positive samples (semantically similar but incorrectly labeled) and soft negative samples (locally matched but globally inconsistent), creating matching uncertainties. Furthermore, current methods fail to fully utilize the neighborhood relationships among semantically similar instances within training batches, limiting the model's ability to learn high-order shared knowledge. This paper proposes the Ambiguity-Aware and High-order Relation learning framework (AAHR) to address these issues. AAHR constructs a unified representation space through dynamic clustering prototype contrastive learning, effectively mitigating the soft positive sample problem. The framework introduces global and local feature extraction mechanisms and an adaptive aggregation network, significantly enhancing full-grained semantic understanding capabilities. Additionally, AAHR employs intra-modal and inter-modal correlation matrices to investigate neighborhood relationships among sample instances thoroughly. It incorporates GNN to enhance semantic interactions between instances. Furthermore, AAHR integrates momentum contrastive learning to expand the negative sample set. These combined strategies significantly improve the model's ability to discriminate between features. Experimental results demonstrate that AAHR outperforms existing state-of-the-art methods on Flickr30K, MSCOCO, and ECCV Caption datasets, considerably improving the accuracy and efficiency of image-text matching. The code and model checkpoints for this research are available at https://github.com/Image-Text-Matching/AAHR .
The rapid advancements in Large Language Models (LLMs) and their multimodal extensions (MLLMs) have ushered in remarkable progress in video understanding. However, a fundamental challenge persists: effectively processing and comprehending video content that extends beyond minutes or hours. While recent efforts like Video-XL-2 have demonstrated novel architectural solutions for extreme efficiency, and advancements in positional encoding such as HoPE and VideoRoPE++ aim to improve spatio-temporal understanding over extensive contexts, current state-of-the-art models still encounter significant computational and memory constraints when faced with the sheer volume of visual tokens from lengthy sequences. Furthermore, maintaining temporal coherence, tracking complex events, and preserving fine-grained details over extended periods remain formidable hurdles, despite progress in agentic reasoning systems like Deep Video Discovery. This position paper posits that a logical, albeit ambitious, next frontier for multimedia research is Infinite Video Understanding -- the capability for models to continuously process, understand, and reason about video data of arbitrary, potentially never-ending duration. We argue that framing Infinite Video Understanding as a blue-sky research objective provides a vital north star for the multimedia, and the wider AI, research communities, driving innovation in areas such as streaming architectures, persistent memory mechanisms, hierarchical and adaptive representations, event-centric reasoning, and novel evaluation paradigms. Drawing inspiration from recent work on long/ultra-long video understanding and several closely related fields, we outline the core challenges and key research directions towards achieving this transformative capability.
Autoregressive large language models (LLMs) have unified a vast range of language tasks, inspiring preliminary efforts in autoregressive video generation. Existing autoregressive video generators either diverge from standard LLM architectures, depend on bulky external text encoders, or incur prohibitive latency due to next-token decoding. In this paper, we introduce Lumos-1, an autoregressive video generator that retains the LLM architecture with minimal architectural modifications. To inject spatiotemporal correlations in LLMs, we identify the efficacy of incorporating 3D RoPE and diagnose its imbalanced frequency spectrum ranges. Therefore, we propose MM-RoPE, a RoPE scheme that preserves the original textual RoPE while providing comprehensive frequency spectra and scaled 3D positions for modeling multimodal spatiotemporal data. Moreover, Lumos-1 resorts to a token dependency strategy that obeys intra-frame bidirectionality and inter-frame temporal causality. Based on this dependency strategy, we identify the issue of frame-wise loss imbalance caused by spatial information redundancy and solve it by proposing Autoregressive Discrete Diffusion Forcing (AR-DF). AR-DF introduces temporal tube masking during training with a compatible inference-time masking policy to avoid quality degradation. By using memory-efficient training techniques, we pre-train Lumos-1 on only 48 GPUs, achieving performance comparable to EMU3 on GenEval, COSMOS-Video2World on VBench-I2V, and OpenSoraPlan on VBench-T2V. Code and models are available at https://github.com/alibaba-damo-academy/Lumos.
Image-text matching (ITM) aims to address the fundamental challenge of aligning visual and textual modalities, which inherently differ in their representations, continuous, high-dimensional image features vs. discrete, structured text. We propose a novel framework that bridges the modality gap by leveraging multimodal large language models (MLLMs) as visual semantic parsers. By generating rich Visual Semantic Descriptions (VSD), MLLMs provide semantic anchor that facilitate cross-modal alignment. Our approach combines: (1) Instance-level alignment by fusing visual features with VSD to enhance the linguistic expressiveness of image representations, and (2) Prototype-level alignment through VSD clustering to ensure category-level consistency. These modules can be seamlessly integrated into existing ITM models. Extensive experiments on Flickr30K and MSCOCO demonstrate substantial performance improvements. The approach also exhibits remarkable zero-shot generalization to cross-domain tasks, including news and remote sensing ITM. The code and model checkpoints are available at https://github.com/Image-Text-Matching/VSD.
Text-to-audio (T2A) generation has achieved promising results with the recent advances in generative models. However, because of the limited quality and quantity of temporally-aligned audio-text pairs, existing T2A methods struggle to handle the complex text prompts that contain precise timing control, e.g., "owl hooted at 2.4s-5.2s". Recent works have explored data augmentation techniques or introduced timing conditions as model inputs to enable timing-conditioned 10-second T2A generation, while their synthesis quality is still limited. In this work, we propose a novel training-free timing-controlled T2A framework, FreeAudio, making the first attempt to enable timing-controlled long-form T2A generation, e.g., "owl hooted at 2.4s-5.2s and crickets chirping at 0s-24s". Specifically, we first employ an LLM to plan non-overlapping time windows and recaption each with a refined natural language description, based on the input text and timing prompts. Then we introduce: 1) Decoupling and Aggregating Attention Control for precise timing control; 2) Contextual Latent Composition for local smoothness and Reference Guidance for global consistency. Extensive experiments show that: 1) FreeAudio achieves state-of-the-art timing-conditioned T2A synthesis quality among training-free methods and is comparable to leading training-based methods; 2) FreeAudio demonstrates comparable long-form generation quality with training-based Stable Audio and paves the way for timing-controlled long-form T2A synthesis. Demo samples are available at: https://freeaudio.github.io/FreeAudio/
This work presents PanMatch, a versatile foundation model for robust correspondence matching. Unlike previous methods that rely on task-specific architectures and domain-specific fine-tuning to support tasks like stereo matching, optical flow or feature matching, our key insight is that any two-frame correspondence matching task can be addressed within a 2D displacement estimation framework using the same model weights. Such a formulation eliminates the need for designing specialized unified architectures or task-specific ensemble models. Instead, it achieves multi-task integration by endowing displacement estimation algorithms with unprecedented generalization capabilities. To this end, we highlight the importance of a robust feature extractor applicable across multiple domains and tasks, and propose the feature transformation pipeline that leverage all-purpose features from Large Vision Models to endow matching baselines with zero-shot cross-view matching capabilities. Furthermore, we assemble a cross-domain dataset with near 1.8 million samples from stereo matching, optical flow, and feature matching domains to pretrain PanMatch. We demonstrate the versatility of PanMatch across a wide range of domains and downstream tasks using the same model weights. Our model outperforms UniMatch and Flow-Anything on cross-task evaluations, and achieves comparable performance to most state-of-the-art task-specific algorithms on task-oriented benchmarks. Additionally, PanMatch presents unprecedented zero-shot performance in abnormal scenarios, such as rainy day and satellite imagery, where most existing robust algorithms fail to yield meaningful results.
Autonomous vehicles (AVs) are poised to redefine transportation by enhancing road safety, minimizing human error, and optimizing traffic efficiency. The success of AVs depends on their ability to interpret complex, dynamic environments through diverse data sources, including video streams, sensor measurements, and contextual textual information. However, seamlessly integrating these multimodal inputs and ensuring transparency in AI-driven decisions remain formidable challenges. This study introduces a novel multimodal framework that synergistically combines video, sensor, and textual data to predict driving actions while generating human-readable explanations, fostering trust and regulatory compliance. By leveraging VideoMAE for spatiotemporal video analysis, a custom sensor fusion module for real-time data processing, and BERT for textual comprehension, our approach achieves robust decision-making and interpretable outputs. Evaluated on the BDD-X (21113 samples) and nuScenes (1000 scenes) datasets, our model reduces training loss from 5.7231 to 0.0187 over five epochs, attaining an action prediction accuracy of 92.5% and a BLEU-4 score of 0.75 for explanation quality, outperforming state-of-the-art methods. Ablation studies confirm the critical role of each modality, while qualitative analyses and human evaluations highlight the model's ability to produce contextually rich, user-friendly explanations. These advancements underscore the transformative potential of multimodal integration and explainability in building safe, transparent, and trustworthy AV systems, paving the way for broader societal adoption of autonomous driving technologies.
As multimedia content expands, the demand for unified multimodal retrieval (UMR) in real-world applications increases. Recent work leverages multimodal large language models (MLLMs) to tackle this task. However, their large parameter size results in high training costs and low inference efficiency. To address this, we propose PUMA: a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning. Our approach improves UMR from both structural and learning perspectives. (1) Structurally, we propose Layer-Pruned Self-Distillation, which prunes MLLMs by keeping only shallow layers while distilling features from dropped deep layers as teacher signals. This reduces parameters and preserves representation capability. (2) On the learning side, we introduce Modality-Adaptive Contrastive Learning Loss (MAC-Loss), which separates in-batch negatives into harder intra-modality and easier inter-modality groups based on the target modality, assigning different temperature strategies to enhance learning efficiency. Experiments show our method significantly reduces resource usage while maintaining strong performance.