Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
We introduce a semidefinite relaxation for optimal control of linear systems with time scaling. These problems are inherently nonconvex, since the system dynamics involves bilinear products between the discretization time step and the system state and controls. The proposed relaxation is closely related to the standard second-order semidefinite relaxation for quadratic constraints, but we carefully select a subset of the possible bilinear terms and apply a change of variables to achieve empirically tight relaxations while keeping the computational load light. We further extend our method to handle piecewise-affine (PWA) systems by formulating the PWA optimal-control problem as a shortest-path problem in a graph of convex sets (GCS). In this GCS, different paths represent different mode sequences for the PWA system, and the convex sets model the relaxed dynamics within each mode. By combining a tight convex relaxation of the GCS problem with our semidefinite relaxation with time scaling, we can solve PWA optimal-control problems through a single semidefinite program.
Modeling and control of nonlinear dynamics are critical in robotics, especially in scenarios with unpredictable external influences and complex dynamics. Traditional cascaded modular control pipelines often yield suboptimal performance due to conservative assumptions and tedious parameter tuning. Pure data-driven approaches promise robust performance but suffer from low sample efficiency, sim-to-real gaps, and reliance on extensive datasets. Hybrid methods combining learning-based and traditional model-based control in an end-to-end manner offer a promising alternative. This work presents a self-supervised learning framework combining learning-based inertial odometry (IO) module and differentiable model predictive control (d-MPC) for Unmanned Aerial Vehicle (UAV) attitude control. The IO denoises raw IMU measurements and predicts UAV attitudes, which are then optimized by MPC for control actions in a bi-level optimization (BLO) setup, where the inner MPC optimizes control actions and the upper level minimizes discrepancy between real-world and predicted performance. The framework is thus end-to-end and can be trained in a self-supervised manner. This approach combines the strength of learning-based perception with the interpretable model-based control. Results show the effectiveness even under strong wind. It can simultaneously enhance both the MPC parameter learning and IMU prediction performance.
This paper presents a new task-space Non-singular Terminal Super-Twisting Sliding Mode (NT-STSM) controller with adaptive gains for robust trajectory tracking of a 7-DOF robotic manipulator. The proposed approach addresses the challenges of chattering, unknown disturbances, and rotational motion tracking, making it suited for high-DOF manipulators in dexterous manipulation tasks. A rigorous boundedness proof is provided, offering gain selection guidelines for practical implementation. Simulations and hardware experiments with external disturbances demonstrate the proposed controller's robust, accurate tracking with reduced control effort under unknown disturbances compared to other NT-STSM and conventional controllers. The results demonstrated that the proposed NT-STSM controller mitigates chattering and instability in complex motions, making it a viable solution for dexterous robotic manipulations and various industrial applications.
This tutorial paper focuses on safe physics-informed machine learning in the context of dynamics and control, providing a comprehensive overview of how to integrate physical models and safety guarantees. As machine learning techniques enhance the modeling and control of complex dynamical systems, ensuring safety and stability remains a critical challenge, especially in safety-critical applications like autonomous vehicles, robotics, medical decision-making, and energy systems. We explore various approaches for embedding and ensuring safety constraints, such as structural priors, Lyapunov functions, Control Barrier Functions, predictive control, projections, and robust optimization techniques, ensuring that the learned models respect stability and safety criteria. Additionally, we delve into methods for uncertainty quantification and safety verification, including reachability analysis and neural network verification tools, which help validate that control policies remain within safe operating bounds even in uncertain environments. The paper includes illustrative examples demonstrating the implementation aspects of safe learning frameworks that combine the strengths of data-driven approaches with the rigor of physical principles, offering a path toward the safe control of complex dynamical systems.
The massive number of antennas in extremely large aperture array (ELAA) systems shifts the propagation regime of signals in internet of things (IoT) communication systems towards near-field spherical wave propagation. We propose a reconfigurable intelligent surfaces (RIS)-assisted beamfocusing mechanism, where the design of the two-dimensional beam codebook that contains both the angular and distance domains is challenging. To address this issue, we introduce a novel Transformer-based two-stage beam training algorithm, which includes the coarse and fine search phases. The proposed mechanism provides a fine-grained codebook with enhanced spatial resolution, enabling precise beamfocusing. Specifically, in the first stage, the beam training is performed to estimate the approximate location of the device by using a simple codebook, determining whether it is within the beamfocusing range (BFR) or the none-beamfocusing range (NBFR). In the second stage, by using a more precise codebook, a fine-grained beam search strategy is conducted. Experimental results unveil that the precision of the RIS-assisted beamfocusing is greatly improved. The proposed method achieves beam selection accuracy up to 97% at signal-to-noise ratio (SNR) of 20 dB, and improves 10% to 50% over the baseline method at different SNRs.
The integration of renewable energy resources (RES) in the power grid can reduce carbon intensity, but also presents certain challenges. The uncertainty and intermittent nature of RES emphasize the need for flexibility in power systems. Moreover, there are noticeable mismatches between real-time electricity prices and carbon intensity patterns throughout the day. These discrepancies may lead customers to schedule energy-intensive tasks during the early hours of the day, a period characterized by lower electricity prices but higher carbon intensity. This paper introduces a novel and comprehensive framework aimed at encouraging customer participation in electricity markets and aligning their flexibility with carbon intensity trends. The proposed approach integrates an incentive-based tariff with a tri-level optimization model, where customers are motivated to submit flexibility bids and, in return, receive financial rewards based on their contributions. The tri-level model ensures a dynamic interaction between the market operation platform (MOP) and end-users. Simulations are performed on a modified IEEE-33 bus system, supported by two scenarios with different RES generations and customer behaviors. Results demonstrate the effectiveness of the proposed framework in guiding the customers' consumption behaviors towards low carbon intensity.
Proximal gradient methods are popular in sparse optimization as they are straightforward to implement. Nevertheless, they achieve biased solutions, requiring many iterations to converge. This work addresses these issues through a suitable feedback control of the algorithm's hyperparameter. Specifically, by designing an integral control that does not substantially impact the computational complexity, we can reach an unbiased solution in a reasonable number of iterations. In the paper, we develop and analyze the convergence of the proposed approach for strongly-convex problems. Moreover, numerical simulations validate and extend the theoretical results to the non-strongly convex framework.
In this work, we present a novel approach to bias the driving style of an artificial race driver (ARD) for online time-optimal trajectory planning. Our method leverages a nonlinear model predictive control (MPC) framework that combines time minimization with exit speed maximization at the end of the planning horizon. We introduce a new MPC terminal cost formulation based on the trajectory planned in the previous MPC step, enabling ARD to adapt its driving style from early to late apex maneuvers in real-time. Our approach is computationally efficient, allowing for low replan times and long planning horizons. We validate our method through simulations, comparing the results against offline minimum-lap-time (MLT) optimal control and online minimum-time MPC solutions. The results demonstrate that our new terminal cost enables ARD to bias its driving style, and achieve online lap times close to the MLT solution and faster than the minimum-time MPC solution. Our approach paves the way for a better understanding of the reasons behind human drivers' choice of early or late apex maneuvers.
This study introduces a novel state estimation framework that incorporates Deep Neural Networks (DNNs) into Moving Horizon Estimation (MHE), shifting from traditional physics-based models to rapidly developed data-driven techniques. A DNN model with Long Short-Term Memory (LSTM) nodes is trained on synthetic data generated by a high-fidelity thermal model of a Permanent Magnet Synchronous Machine (PMSM), which undergoes thermal derating as part of the torque control strategy in a battery electric vehicle. The MHE is constructed by integrating the trained DNN with a simplified driving dynamics model in a discrete-time formulation, incorporating the LSTM hidden and cell states in the state vector to retain system dynamics. The resulting optimal control problem (OCP) is formulated as a nonlinear program (NLP) and implemented using the acados framework. Model-in-the-loop (MiL) simulations demonstrate accurate temperature estimation, even under noisy sensor conditions or failures. Achieving threefold real-time capability on embedded hardware confirms the feasibility of the approach for practical deployment. The primary focus of this study is to assess the feasibility of the MHE framework using a DNN-based plant model instead of focusing on quantitative comparisons of vehicle performance. Overall, this research highlights the potential of DNN-based MHE for real-time, safety-critical applications by combining the strengths of model-based and data-driven methods.
Kalman filtering can provide an optimal estimation of the system state from noisy observation data. This algorithm's performance depends on the accuracy of system modeling and noise statistical characteristics, which are usually challenging to obtain in practical applications. The powerful nonlinear modeling capabilities of deep learning, combined with its ability to extract features from large amounts of data automatically, offer new opportunities for improving the Kalman filter. This paper proposes a novel method that leverages the Spiking Neural Network to optimize the Kalman filter. Our approach aims to reduce the reliance on prior knowledge of system and observation noises, allowing for adaptation to varying statistical characteristics of time-varying noise. Furthermore, we investigate the potential of SNNs in improving the computational efficiency of the Kalman filter. In our method, we design an integration strategy between the SNN and the Kalman filter. The SNN is trained to directly approximate the optimal gain matrix from observation data, thereby alleviating the computational burden of complex matrix operations inherent in traditional Kalman filtering while maintaining the accuracy and robustness of state estimation. Its average error has been reduced by 18\%-65\% compared with other methods.
Safe and efficient path planning in parking scenarios presents a significant challenge due to the presence of cluttered environments filled with static and dynamic obstacles. To address this, we propose a novel and computationally efficient planning strategy that seamlessly integrates the predictions of dynamic obstacles into the planning process, ensuring the generation of collision-free paths. Our approach builds upon the conventional Hybrid A star algorithm by introducing a time-indexed variant that explicitly accounts for the predictions of dynamic obstacles during node exploration in the graph, thus enabling dynamic obstacle avoidance. We integrate the time-indexed Hybrid A star algorithm within an online planning framework to compute local paths at each planning step, guided by an adaptively chosen intermediate goal. The proposed method is validated in diverse parking scenarios, including perpendicular, angled, and parallel parking. Through simulations, we showcase our approach's potential in greatly improving the efficiency and safety when compared to the state of the art spline-based planning method for parking situations.
Mobile manipulation robots are continuously advancing, with their grasping capabilities rapidly progressing. However, there are still significant gaps preventing state-of-the-art mobile manipulators from widespread real-world deployments, including their ability to reliably grasp items in unstructured environments. To help bridge this gap, we developed SHOPPER, a mobile manipulation robot platform designed to push the boundaries of reliable and generalizable grasp strategies. We develop these grasp strategies and deploy them in a real-world grocery store -- an exceptionally challenging setting chosen for its vast diversity of manipulable items, fixtures, and layouts. In this work, we present our detailed approach to designing general grasp strategies towards picking any item in a real grocery store. Additionally, we provide an in-depth analysis of our latest real-world field test, discussing key findings related to fundamental failure modes over hundreds of distinct pick attempts. Through our detailed analysis, we aim to offer valuable practical insights and identify key grasping challenges, which can guide the robotics community towards pressing open problems in the field.
The Midwest, with its vast agricultural lands, is rapidly emerging as a key region for utility-scale solar expansion. However, traditional power planning has yet to integrate local economic impact directly into capacity expansion to guide optimal siting decisions. Moreover, existing economic assessments tend to emphasize local benefits while overlooking the opportunity costs of converting productive farmland for solar development. This study addresses these gaps by endogenously incorporating local economic metrics into a power system planning model to evaluate how economic impacts influence solar siting, accounting for the cost of lost agricultural output. We analyze all counties within the Great Lakes region, constructing localized supply and marginal benefit curves that are embedded within a multi-objective optimization framework aimed at minimizing system costs and maximizing community economic benefits. Our findings show that counties with larger economies and lower farmland productivity deliver the highest local economic benefit per megawatt (MW) of installed solar capacity. In Ohio, for example, large counties generate up to $34,500 per MW, driven in part by high property tax revenues, while smaller counties yield 31% less. Accounting for the opportunity cost of displaced agricultural output reduces local benefits by up to 16%, depending on farmland quality. A scenario prioritizing solar investment in counties with higher economic returns increases total economic benefits by $1 billion (or 11%) by 2040, with solar investment shifting away from Michigan and Wisconsin (down by 39%) toward Ohio and Indiana (up by 75%), with only a marginal increase of 0.5% in system-wide costs. These findings underscore the importance of integrating economic considerations into utility-scale solar planning to better align decarbonization goals with regional and local economic development.
We propose a framework enabling mobile manipulators to reliably complete pick-and-place tasks for assembling structures from construction blocks. The picking uses an eye-in-hand visual servoing controller for object tracking with Control Barrier Functions (CBFs) to ensure fiducial markers in the blocks remain visible. An additional robot with an eye-to-hand setup ensures precise placement, critical for structural stability. We integrate human-in-the-loop capabilities for flexibility and fault correction and analyze robustness to camera pose errors, proposing adapted barrier functions to handle them. Lastly, experiments validate the framework on 6-DoF mobile arms.
Data-driven methods have shown potential in electric-vehicle battery management tasks such as capacity estimation, but their deployment is bottlenecked by poor performance in data-limited scenarios. Sharing battery data among algorithm developers can enable accurate and generalizable data-driven models. However, an effective battery management framework that simultaneously ensures data privacy and fault tolerance is still lacking. This paper proposes a swarm battery management system that unites a decentralized swarm learning (SL) framework and credibility weight-based model merging mechanism to enhance battery capacity estimation in data-limited scenarios while ensuring data privacy and security. The effectiveness of the SL framework is validated on a dataset comprising 66 commercial LiNiCoAlO2 cells cycled under various operating conditions. Specifically, the capacity estimation performance is validated in four cases, including data-balanced, volume-biased, feature-biased, and quality-biased scenarios. Our results show that SL can enhance the estimation accuracy in all data-limited cases and achieve a similar level of accuracy with central learning where large amounts of data are available.
Accurately modeling friction in robotics remains a core challenge, as robotics simulators like Mujoco and PyBullet use simplified friction models or heuristics to balance computational efficiency with accuracy, where these simplifications and approximations can lead to substantial differences between simulated and physical performance. In this paper, we present a physics-informed friction estimation framework that enables the integration of well-established friction models with learnable components-requiring only minimal, generic measurement data. Our approach enforces physical consistency yet retains the flexibility to adapt to real-world complexities. We demonstrate, on an underactuated and nonlinear system, that the learned friction models, trained solely on small and noisy datasets, accurately simulate dynamic friction properties and reduce the sim-to-real gap. Crucially, we show that our approach enables the learned models to be transferable to systems they are not trained on. This ability to generalize across multiple systems streamlines friction modeling for complex, underactuated tasks, offering a scalable and interpretable path toward bridging the sim-to-real gap in robotics and control.
Soft robots are increasingly used in healthcare, especially for assistive care, due to their inherent safety and adaptability. Controlling soft robots is challenging due to their nonlinear dynamics and the presence of time delays, especially in applications like a soft robotic arm for patient care. This paper presents a learning-based approach to approximate the nonlinear state predictor (Smith Predictor), aiming to improve tracking performance in a two-module soft robot arm with a short inherent input delay. The method uses Kernel Recursive Least Squares Tracker (KRLST) for online learning of the system dynamics and a Legendre Delay Network (LDN) to compress past input history for efficient delay compensation. Experimental results demonstrate significant improvement in tracking performance compared to a baseline model-based non-linear controller. Statistical analysis confirms the significance of the improvements. The method is computationally efficient and adaptable online, making it suitable for real-world scenarios and highlighting its potential for enabling safer and more accurate control of soft robots in assistive care applications.
The study of flocking in biological systems has identified conditions for self-organized collective behavior, inspiring the development of decentralized strategies to coordinate the dynamics of swarms of drones and other autonomous vehicles. Previous research has focused primarily on the role of the time-varying interaction network among agents while assuming that the agents themselves are identical or nearly identical. Here, we depart from this conventional assumption to investigate how inter-individual differences between agents affect the stability and convergence in flocking dynamics. We show that flocks of agents with optimally assigned heterogeneous parameters significantly outperform their homogeneous counterparts, achieving 20-40% faster convergence to desired formations across various control tasks. These tasks include target tracking, flock formation, and obstacle maneuvering. In systems with communication delays, heterogeneity can enable convergence even when flocking is unstable for identical agents. Our results challenge existing paradigms in multi-agent control and establish system disorder as an adaptive, distributed mechanism to promote collective behavior in flocking dynamics.