Loading...
Loading...
Browse, search and filter the latest cybersecurity research papers from arXiv
We show that the existence of a strictly compatible pair of control Lyapunov and control barrier functions is equivalent to the existence of a single smooth Lyapunov function that certifies both asymptotic stability and safety. This characterization complements existing literature on converse Lyapunov functions by establishing a partial differential equation (PDE) characterization with prescribed boundary conditions on the safe set, ensuring that the safe set is exactly certified by this Lyapunov function. The result also implies that if a safety and stability specification cannot be certified by a single Lyapunov function, then any pair of control Lyapunov and control barrier functions necessarily leads to a conflict and cannot be satisfied simultaneously in a robust sense.
Artificial intelligence (AI) models are becoming key components in an autonomous vehicle (AV), especially in handling complicated perception tasks. However, closing the loop through AI-based feedback may pose significant risks on reliability of autonomous driving due to very limited understanding about the mechanism of AI-driven perception processes. To overcome it, this paper aims to develop tools for modeling, analysis, and synthesis for a class of AI-based AV; in particular, their closed-loop properties, e.g., stability, robustness, and performance, are rigorously studied in the statistical sense. First, we provide a novel modeling means for the AI-driven perception processes by looking at their error characteristics. Specifically, three fundamental AI-induced perception uncertainties are recognized and modeled by Markov chains, Gaussian processes, and bounded disturbances, respectively. By means of that, the closed-loop stochastic stability (SS) is established in the sense of mean square, and then, an SS control synthesis method is presented within the framework of linear matrix inequalities (LMIs). Besides the SS properties, the robustness and performance of AI-based AVs are discussed in terms of a stochastic guaranteed cost, and criteria are given to test the robustness level of an AV when in the presence of AI-induced uncertainties. Furthermore, the stochastic optimal guaranteed cost control is investigated, and an efficient design procedure is developed innovatively based on LMI techniques and convex optimization. Finally, to illustrate the effectiveness, the developed results are applied to an example of car following control, along with extensive simulation.
The installation of electric vehicle (EV) charging stations in buildings is inevitable, as states push for increased EV adoption to support decarbonization efforts. This transition could force the need for grid infrastructure upgrades and enhanced controls to support reliable power delivery to end-use loads, and overall economic operation. This paper evaluates strategies that address these needs on two fronts: i) optimal sizing of service transformers and battery energy storage systems (BESS), and ii) optimized coordination between EV charging, BESS operation, and building demand. These strategies are applied to a school campus setting, consisting of building and EV charging loads, to provide an illustration of energy management in commercial buildings with EV fleets. A rolling-window optimization approach is applied to determine i) optimal sizing of the service transformer and BESS and ii) optimal control of EV charging and BESS charge/discharge schedules. The design and control strategies are validated in a 20-year time horizon with an annually increasing number of EVs (buses and vans). In addition, an economic analysis is also carried out to show the costs and benefits of each design as a medium- and long-term investment.
Safety is a critical concern in autonomous vehicle (AV) systems, especially when AI-based sensing and perception modules are involved. However, due to the black box nature of AI algorithms, it makes closed-loop analysis and synthesis particularly challenging, for example, establishing closed-loop stability and ensuring performance, while they are fundamental to AV safety. To approach this difficulty, this paper aims to develop new modeling, analysis, and synthesis tools for AI-based AVs. Inspired by recent developments in perception error models (PEMs), the focus is shifted from directly modeling AI-based perception processes to characterizing the perception errors they produce. Two key classes of AI-induced perception errors are considered: misdetection and measurement noise. These error patterns are modeled using continuous-time Markov chains and Wiener processes, respectively. By means of that, a PEM-augmented driving model is proposed, with which we are able to establish the closed-loop stability for a class of AI-driven AV systems via stochastic calculus. Furthermore, a performance-guaranteed output feedback control synthesis method is presented, which ensures both stability and satisfactory performance. The method is formulated as a convex optimization problem, allowing for efficient numerical solutions. The results are then applied to an adaptive cruise control (ACC) scenario, demonstrating their effectiveness and robustness despite the corrupted and misleading perception.
Agents controlled by the output of reinforcement learning (RL) algorithms often transition to unsafe states, particularly in uncertain and partially observable environments. Partially observable Markov decision processes (POMDPs) provide a natural setting for studying such scenarios with limited sensing. Shields filter undesirable actions to ensure safe RL by preserving safety requirements in the agents' policy. However, synthesizing holistic shields is computationally expensive in complex deployment scenarios. We propose the compositional synthesis of shields by modeling safety requirements by parts, thereby improving scalability. In particular, problem formulations in the form of POMDPs using RL algorithms illustrate that an RL agent equipped with the resulting compositional shielding, beyond being safe, converges to higher values of expected reward. By using subproblem formulations, we preserve and improve the ability of shielded agents to require fewer training episodes than unshielded agents, especially in sparse-reward settings. Concretely, we find that compositional shield synthesis allows an RL agent to remain safe in environments two orders of magnitude larger than other state-of-the-art model-based approaches.
Diffusion-based planners have gained significant recent attention for their robustness and performance in long-horizon tasks. However, most existing planners rely on a fixed, pre-specified horizon during both training and inference. This rigidity often produces length-mismatch (trajectories that are too short or too long) and brittle performance across instances with varying geometric or dynamical difficulty. In this paper, we introduce the Variable Horizon Diffuser (VHD) framework, which treats the horizon as a learned variable rather than a fixed hyperparameter. Given a start-goal pair, we first predict an instance-specific horizon using a learned Length Predictor model, which guides a Diffusion Planner to generate a trajectory of the desired length. Our design maintains compatibility with existing diffusion planners by controlling trajectory length through initial noise shaping and training on randomly cropped sub-trajectories, without requiring architectural changes. Empirically, VHD improves success rates and path efficiency in maze-navigation and robot-arm control benchmarks, showing greater robustness to horizon mismatch and unseen lengths, while keeping training simple and offline-only.
This paper addresses the problem of privacy-preserving consensus control for multi-agent systems (MAS) using differential privacy. We propose a novel distributed finite-horizon linear quadratic regulator (LQR) framework, in which agents share individual state information while preserving the confidentiality of their local pairwise weight matrices, which are considered sensitive data in MAS. Protecting these matrices effectively safeguards each agent's private cost function and control preferences. Our solution injects consensus error-dependent Laplace noise into the communicated state information and employs a carefully designed time-dependent scaling factor in the local cost functions. {This approach guarantees bounded consensus and achieves rigorous $\epsilon$-differential privacy for the weight matrices without relying on specific noise distribution assumptions.} Additionally, we analytically characterize the trade-off between consensus accuracy and privacy level, offering clear guidelines on how to enhance consensus performance through appropriate scaling of the LQR weight matrices and the privacy budget.
In this work, we consider the problem of identifying an unknown linear dynamical system given a finite hypothesis class. In particular, we analyze the effect of the excitation input on the sample complexity of identifying the true system with high probability. To this end, we present sample complexity lower bounds that capture the choice of the selected excitation input. The sample complexity lower bound gives rise to a system theoretic condition to determine the potential benefit of experiment design. Informed by the analysis of the sample complexity lower bound, we propose a persistent excitation (PE) condition tailored to the considered setting, which we then use to establish sample complexity upper bounds. Notably, the \acs{PE} condition is weaker than in the case of an infinite hypothesis class and allows analyzing different excitation inputs modularly. Crucially, the lower and upper bounds share the same dependency on key problem parameters. Finally, we leverage these insights to propose an active learning algorithm that sequentially excites the system optimally with respect to the current estimate, and provide sample complexity guarantees for the presented algorithm. Concluding simulations showcase the effectiveness of the proposed algorithm.
This note presents a novel, efficient economic model predictive control (EMPC) scheme for non-dissipative systems subject to state and input constraints. A new conception of convergence filters is defined to address the stability issue of EMPC for constrained non-dissipative systems. Three convergence filters are designed accordingly to be imposed into the receding horizon optimization problem of EMPC. To improve online computational efficiency, the variable horizon idea without terminal constraints is adopted to compromise the convergence speed, economic performance, and computational burden of EMPC. Moreover, sufficient conditions are derived to guarantee the recursive feasibility and stability of the EMPC. The advantages of the proposed EMPC are validated by a classical non-dissipative continuous stirred-tank reactor.
This paper proposes a novel varying horizon economic model predictive control (EMPC) scheme without terminal constraints for constrained nonlinear systems with additive disturbances and unknown economic costs. The general regression learning framework with mixed kernels is first used to reconstruct the unknown cost. Then an online iterative procedure is developed to adjust the horizon adaptively. Again, an elegant horizon-dependent contraction constraint is designed to ensure the convergence of the closed-loop system to a neighborhood of the desired steady state. Moreover, sufficient conditions ensuring recursive feasibility and input-to-state stability are established for the system in closed-loop with the EMPC. The merits of the proposed scheme are verified by the simulations of a continuous stirred tank reactor and a four-tank system in terms of robustness, economic performance and online computational burden.
Motivated by the well established idea that collective wisdom is greater than that of an individual, we propose a novel learning dynamics as a sort of companion to the Abelson model of opinion dynamics. Agents are assumed to make independent guesses about the true state of the world after which they engage in opinion exchange leading to consensus. We investigate the problem of finding the optimal parameters for this exchange, e.g. those that minimize the variance of the consensus value. Specifically, the parameter we examine is susceptibility to opinion change. We propose a dynamics for distributed learning of the optimal parameters and analytically show that it converges for all relevant initial conditions by linking to well established results from consensus theory. Lastly, a numerical example provides intuition on both system behavior and our proof methods.
Epidemic control frequently relies on adjusting interventions based on prevalence. But designing such policies is a highly non-trivial problem due to uncertain intervention effects, costs and the difficulty of quantifying key transmission mechanisms and parameters. Here, using exact mathematical and computational methods, we reveal a fundamental limit in epidemic control in that prevalence feedback policies are outperformed by a single optimally chosen constant control level. Specifically, we find no incentive to use prevalence based control under a wide class of cost functions that depend arbitrarily on interventions and scale with infections. We also identify regimes where prevalence feedback is beneficial. Our results challenge the current understanding that prevalence based interventions are required for epidemic control and suggest that, for many classes of epidemics, interventions should not be varied unless the epidemic is near the herd immunity threshold.
The control of robotic systems in complex, shared collaborative workspaces presents significant challenges in achieving robust performance and safety when learning from experienced or simulated data is employed in the pipeline. A primary bottleneck is the reliance on coordinate-dependent models, which leads to profound data inefficiency by failing to generalize physical interactions across different frames of reference. This forces learning algorithms to rediscover fundamental physical principles in every new orientation, artificially inflating the complexity of the learning task. This paper introduces a novel framework that synergizes a coordinate-free, unreduced multibody dynamics and kinematics model based on tensor mechanics with a Data-Assisted Control (DAC) architecture. A non-recursive, closed-form Newton-Euler model in an augmented matrix form is derived that is optimized for tensor-based control design. This structure enables a principled decomposition of the system into a structurally certain, physically grounded part and an uncertain, empirical, and interaction-focused part, mediated by a virtual port variable. Then, a complete, end-to-end tensor-invariant pipeline for modeling, control, and learning is proposed. The coordinate-free control laws for the structurally certain part provide a stable and abstract command interface, proven via Lyapunov analysis. Eventually, the model and closed-loop system are validated through simulations. This work provides a naturally ideal input for data-efficient, frame-invariant learning algorithms, such as equivariant learning, designed to learn the uncertain interaction. The synergy directly addresses the data-inefficiency problem, increases explainability and interpretability, and paves the way for more robust and generalizable robotic control in interactive environments.
The multi-agent patrol problem refers to repeatedly visiting different locations in an environment using multiple autonomous agents. For over two decades, researchers have studied this problem in various settings. While providing valuable insights into the problem, the works in existing literature have not commented on the nature of the optimal solutions to the problem. We first show that an $\epsilon$-approximate recurrent patrol strategy exists for every feasible patrol strategy. Then, we establish the existence of a recurrent patrol strategy that is an $\epsilon$-optimal solution to the General Patrol Problem. The factor $\epsilon$ is proportional to the discretisation constant $D$, which can be arbitrarily small and is independent of the number of patrol agents and the size of the environment. This result holds for a variety of problem formulations already studied. We also provide an algorithmic approach to determine an $\epsilon$-approximate recurrent patrol strategy for a patrol strategy created by any method from the literature. We perform extensive simulations in graphs based on real-life environments to validate the claims made in this work.
We present a model predictive control (MPC) framework for nonlinear stochastic systems that ensures safety guarantee with high probability. Unlike most existing stochastic MPC schemes, our method adopts a set-erosion that converts the probabilistic safety constraint into a tractable deterministic safety constraint on a smaller safe set over deterministic dynamics. As a result, our method is compatible with any off-the-shelf deterministic MPC algorithm. The key to the effectiveness of our method is a tight bound on the stochastic fluctuation of a stochastic trajectory around its nominal version. Our method is scalable and can guarantee safety with high probability level (e.g., 99.99%), making it particularly suitable for safety-critical applications involving complex nonlinear dynamics. Rigorous analysis is conducted to establish a theoretical safety guarantee, and numerical experiments are provided to validate the effectiveness of the proposed MPC method.
Box/cabinet scenarios with stacked objects pose significant challenges for robotic motion due to visual occlusions and constrained free space. Traditional collision-free trajectory planning methods often fail when no collision-free paths exist, and may even lead to catastrophic collisions caused by invisible objects. To overcome these challenges, we propose an operational aware interactive motion planner (PaiP) a real-time closed-loop planning framework utilizing multimodal tactile perception. This framework autonomously infers object interaction features by perceiving motion effects at interaction interfaces. These interaction features are incorporated into grid maps to generate operational cost maps. Building upon this representation, we extend sampling-based planning methods to interactive planning by optimizing both path cost and operational cost. Experimental results demonstrate that PaiP achieves robust motion in narrow spaces.
The partitioning problem is of central relevance for designing and implementing non-centralized Model Predictive Control (MPC) strategies for large-scale systems. These control approaches include decentralized MPC, distributed MPC, hierarchical MPC, and coalitional MPC. Partitioning a system for the application of non-centralized MPC consists of finding the best definition of the subsystems, and their allocation into groups for the definition of local controllers, to maximize the relevant performance indicators. The present survey proposes a novel systematization of the partitioning approaches in the literature in five main classes: optimization-based, algorithmic, community-detection-based, game-theoretic-oriented, and heuristic approaches. A unified graph-theoretical formalism, a mathematical re-formulation of the problem in terms of mixed-integer programming, the novel concepts of predictive partitioning and multi-topological representations, and a methodological formulation of quality metrics are developed to support the classification and further developments of the field. We analyze the different classes of partitioning techniques, and we present an overview of their strengths and limitations, which include a technical discussion about the different approaches. Representative case studies are discussed to illustrate the application of partitioning techniques for non-centralized MPC in various sectors, including power systems, water networks, wind farms, chemical processes, transportation systems, communication networks, industrial automation, smart buildings, and cyber-physical systems. An outlook of future challenges completes the survey.
Active object detection, which aims to identify objects of interest through controlled camera movements, plays a pivotal role in real-world visual perception for autonomous robotic applications, such as manufacturing tasks (e.g., assembly operations) performed in unknown environments. A dual control for exploration and exploitation (DCEE) algorithm is presented within goal-oriented control systems to achieve efficient active object detection, leveraging active learning by incorporating variance-based uncertainty estimation in the cost function. This novel method employs an exploration-exploitation balanced cost function to actively guide the selection of the next viewpoint. Specifically, active object detection is achieved through the development of a reward function that encodes knowledge about the confidence variation of objects as a function of viewpoint position within a given domain. By identifying the unknown parameters of this function, the system generates an optimal viewpoint planning strategy. DCEE integrates parameter estimation of the reward function and view planning, ensuring a balanced trade-off between the exploitation of learned knowledge and active exploration during the planning process. Moreover, it demonstrates remarkable adaptability across diverse scenarios, effectively handling LEGO brick detection at varying locations. Importantly, the algorithm maintains consistent configuration settings and a fixed number of parameters across various scenarios, underscoring its efficiency and robustness. To validate the proposed approach, extensive numerical studies, high-fidelity virtual simulations, and real-world experiments under various scenarios were conducted. The results confirm the effectiveness of DCEE in active object detection, showcasing superior performance compared to existing methods, including model predictive control (MPC) and entropy approaches.